Самолеты

Федеральная система разведки и контроля воздушного пространства. О некоторых проблемах контроля за соблюдением порядка использования воздушного пространства

Надежная ВКО страны невозможна без создания эффективной системы разведки и контроля воздушного пространства. Важное место в ней занимает маловысотная локация. Сокращение подразделений и средств радиолокационной разведки привело к тому, что над территорией РФ сегодня существуют открытые участки государственной границы и внутренних районов страны. ОАО "НПП "Кант", входящее в состав госкорпорации "Ростехнологии", ведет НИОКР по созданию опытного образца многопозиционной разнесенной радиолокационной системы полуактивной локации в поле излучения систем сотовой связи, радиовещания и телевидения наземного и космического базирования (комплекс "Рубеж").

Сегодня многократно возросшая точность наведения систем вооружения более не требует массового применения средств воздушного нападения (СВН), а ужесточившиеся требования электромагнитной совместимости, а также санитарных норм и правил не позволяют в мирное время "загрязнять" населенные территории страны применением сверхвысокочастотного излучения (СВЧ-излучения) высокопотенциальных радиолокационных станций (РЛС). В соответствии с федеральным законом "О санитарно-эпидемиологическом благополучии населения" от 30 марта 1999 года № 52-ФЗ установлены нормы излучений, которые носят обязательный характер на всей территории России. Мощность излучения любой из известных РЛС ПВО многократно превышает эти нормы. Проблема усугубляется и высокой вероятностью применения низколетящих малозаметных целей, что требует уплотнения боевых порядков РЛС традиционного парка и увеличения затратности содержания сплошного маловысотного радиолокационного поля (МВРЛП). Для создания сплошного дежурного круглосуточного МВРЛП высотой от 25 метров (высота пролета крылатой ракеты или самолета сверхлегкой авиации) по фронту всего 100 километров требуется не менее двух РЛС типа КАСТА-2Е2 (39Н6), потребляемая мощность каждой из которых составляет 23 кВт. С учетом средней стоимости электроэнергии в ценах 2013 года только стоимость поддержания этого участка МВРЛП составит не менее трех миллионов рублей в год. Притом что протяженность границ РФ - 60 900 000 километров.

Кроме того, с началом военных действий в условиях активного применения радиоэлектронного подавления (РЭП) противником традиционные дежурные средства локации могут быть в значительной степени подавлены, поскольку передающая часть РЛС целиком демаскирует ее местоположение.

Сохранить дорогостоящий ресурс РЛС, нарастить их возможности в мирное и военное время, а также повысить помехозащищенность МВРЛП возможно путем применения систем полуактивной локации со сторонним источником подсвета.

Для обнаружения воздушных и космических целей

За рубежом широко проводятся исследования по использованию источников стороннего излучения в системах полуактивной локации. Пассивные радарные системы, анализирующие отраженные от целей сигналы ТВ-вещания (эфирного и спутникового), FM-радио и сотовой телефонии, КВ радиосвязи, за последние 20 лет стали одной из самых популярных и многообещающих областей изучения. Считается, что наибольших успехов здесь достигла американская корпорация Lockheed Martin со своей системой Silent Sentry ("Тихий часовой").

Собственные версии пассивных радаров разрабатывают фирмы Avtec Systems, Dynetics, Cassidian, Roke Manor Research, а также французское космическое агентство ONERA. Активно работы по данной тематике ведутся в Китае, Австралии, Италии, Великобритании.

Аналогичные работы по обнаружению целей в поле подсвета телецентров проводились в Военной инженерной радиотехнической академии противовоздушной обороны (ВИРТА ПВО) имени Говорова. Однако полученный более четверти века назад весомый практический задел по использованию подсвета источников аналоговых излучений для решения задач полуактивной локации оказался невостребованным.

С развитием цифровых вещательных и связных технологий возможности использования систем полуактивной локации со сторонним подсветом появились и в России.

Разрабатываемый ОАО "НПП "Кант" комплекс многопозиционной разнесенной радиолокационной системы полуактивной локации "Рубеж" предназначен для обнаружения воздушных и космических целей в поле стороннего подсвета. Такое поле подсвета отличается рентабельностью мониторинга воздушного пространства в мирное время и устойчивостью к радиоэлектронному противодействию во время войны.

Наличие большого числа высокостабильных источников излучения (вещания, связи) как в космосе, так и на Земле, образующих сплошные электромагнитные поля подсвета, дает возможность их использования в качестве источника сигнала в полуактивной системе для обнаружения различного типа целей. При этом не требуется затрачивать средства на излучения собственных радиосигналов. Для приема отраженных от целей сигналов используются многоканальные разнесенные на местности приемные модули (ПМ), которые совместно с источниками излучений создают комплекс полуактивной локации. Пассивный режим работы комплекса "Рубеж" позволяет обеспечить скрытность данных средств и использовать структуру комплекса в военное время. Расчеты показывают, что скрытность полуактивной системы локации по коэффициенту маскировки как минимум в 1,5-2 раза выше, чем РЛС с традиционным совмещенным принципом построения.

Применение более рентабельных средств локации дежурного режима позволит существенно сохранить ресурс дорогостоящих боевых систем за счет экономии установленного лимита расходования ресурса. Помимо дежурного режима предлагаемый комплекс может выполнять задачи и в условиях военного времени, когда все источники излучения мирного периода будут выведены из строя или отключены.

В этой связи дальновидным стало бы решение о создании специализированных ненаправленных передатчиков скрытого шумового излучения (100-200 Вт), которые можно было бы забрасывать или устанавливать на угрожаемых направлениях (в секторах) с целью создания поля стороннего подсвета в особый период. Это позволит на базе оставшихся с мирного времени сетей приемных модулей создать скрытую многопозиционную активно-пассивную систему военного времени.

Аналогов нет

Комплекс "Рубеж" не является аналогом ни одного из известных образцов, представленных в Государственной программе вооружения. Вместе с тем передающая часть комплекса уже существует в виде густой сети базовых станций (БС) сотовой связи, наземных и спутниковых передающих центров радиовещания и телевидения. Поэтому центральной задачей для "Канта" стало создание приемных модулей отраженных от целей сигналов стороннего подсвета и системы обработки сигналов (программно-алгоритмического обеспечения, реализующего системы обнаружения, обработки отраженных сигналов и борьбы с проникающими сигналами).

Современное состояние электронно-компонентной базы, систем передачи данных и синхронизации делает возможным создание приемных модулей компактными, с небольшими массогабаритными размерами. Такие модули могут располагаться на мачтах сотовой связи, используя линии питания данной системы и не оказывая из-за своего незначительного энергопотребления какого-либо влияния на ее работу.

Достаточно высокие вероятностные характеристики обнаружения позволяют использовать данное средство в качестве необслуживаемой, автоматической системы установления факта пересечения (пролета) определенного рубежа (например государственной границы) маловысотной целью с последующей выдачей предварительного целеуказания специализированным средствам наземного или космического базирования о направлении и рубеже появления нарушителя.

Так, расчеты показывают, что поле подсвета базовых станций с разносом между БС 35 километров и мощностью излучения от 100 Вт способно обеспечить обнаружение маловысотных аэродинамических целей с ЭПР 1м2 в "просветной зоне" с вероятностью правильного обнаружения 0,7 и вероятностью ложной тревоги 10-4. Количество сопровождаемых целей определяется производительностью вычислительных средств. Основные характеристики системы были проверены серией практических экспериментов по обнаружению маловысотных целей, проведенных ОАО "НПП "Кант" при содействии ОАО "РТИ им. академика А. Л. Минца" и участии сотрудников ВА ВКО им. Г. К. Жукова. Результаты испытаний подтвердили перспективность применения систем маловысотной полуактивной локации целей в поле подсвета БС систем сотовой связи стандарта GSM. При удалении приемного модуля на расстоянии 1,3-2,6 километра от БС с мощностью излучения 40 Вт цель типа Як-52 уверенно обнаруживалась под различными ракурсами наблюдения как в переднюю, так и заднюю полусферу в первом элементе разрешения.

Конфигурация существующей сети сотовой связи позволяет строить гибкое предполье мониторинга маловысотного воздушного и приземного пространства в поле подсвета БС сети GSM связи в приграничной полосе.

Систему предлагается строить в несколько рубежей обнаружения на глубину 50-100 километров, по фронту в полосе 200-300 километров и по высоте до 1500 метров. Каждый рубеж обнаружения представляет последовательную цепь зон обнаружения, располагаемых между БС. Зона обнаружения формируется однобазовой разнесенной (бистатической) допплеровской РЛС. Данное принципиальное решение основано на том, что при просветном обнаружении цели ее эффективная отражающая поверхность многократно возрастает, что позволяет обнаруживать малозаметные цели, выполненные по технологии "Стелс".

Наращивая возможности ВКО

От рубежа к рубежу обнаружения происходит уточнение количества и направления пролетающих целей. При этом становится возможным алгоритмическое (расчетное) определение дальности до цели и ее высоты. Количество одновременно регистрируемых целей определяется пропускной способностью каналов передачи информации по линиям сотовых сетей связи.

Информация с каждой зоны обнаружения поступает по сетям GSM в Центр сбора и обработки информации (ЦСОИ), который может располагаться за много сотен километров от системы обнаружения. Отождествление целей осуществляется по пеленгационным, частотным и временным признакам, а также при установке видеорегистраторов - по изображению целей.

Таким образом, комплекс "Рубеж" позволит:

  • создать сплошное маловысотное радиолокационное поле с многократным многочастотным перекрытием зон излучения, создаваемых различными источниками подсвета;
  • обеспечить средствами контроля воздушного и наземного пространства слабооборудованную традиционными средствами радиолокации государственную границу и другие территории страны (нижняя граница контролируемого радиолокационного поля менее 300 метров создана лишь вокруг диспетчерских узлов крупных аэропортов. Над остальной территорией РФ нижняя граница определяется только потребностями сопровождения гражданских воздушных судов вдоль магистральных авиалиний, которые не опускаются ниже 5000 метров);
  • существенно снизить затраты на размещение и ввод в эксплуатацию по сравнению с любыми аналогичными системами;
  • решать задачи в интересах практически всех силовых ведомств РФ: МО (наращивание дежурного маловысотного радиолокационного поля на угрожаемых направлениях), ФСО (в части обеспечения безопасности объектов государственной охраны - комплекс можно располагать в пригородных и городских районах для мониторинга воздушных террористических угроз или контроля использования приземного пространства), УВД (контроль над полетами легких летательных аппаратов и беспилотных средств на малых высотах, включая воздушные такси, - по прогнозам Минтранса ежегодный прирост летательных аппаратов малой авиации общего назначения составляет 20 процентов ежегодно), ФСБ (задачи антитеррористической защиты стратегически важных объектов и охраны государственной границы), МЧС (мониторинг пожарной безопасности, поиск потерпевших аварию летательных аппаратов и т. д.).
Предложенные средства и способы решения задач маловысотной радиолокационной разведки ни в коем случае не отменяют созданные и состоящие на снабжении ВС РФ средства и комплексы, а лишь наращивают их возможности.

Справка "ВПК"

Научно-производственное предприятие "Кант" более 28 лет разрабатывает, производит и проводит техническое обслуживание современных средств специальной связи и передачи данных, радиомониторинга и радиоэлектронной борьбы, комплексов защиты информации и информационных каналов. Изделия предприятия стоят на снабжении практически всех силовых структур Российской Федерации и используются при решении оборонных и специальных задач.

ОАО "НПП "Кант" обладает современной лабораторной и производственной базой, высокопрофессиональным коллективом ученых и инженерно-технических специалистов, что позволяет ему выполнять полный комплекс научно-производственных задач: от НИОКР, серийного производства до ремонта и сервисного обслуживания техники, находящейся в эксплуатации.

Решаться данная проблема может доступными, рентабельными и безопасными в санитарном отношении средствами. Строятся такие средства на принципах полуактивной радиолокации (ПАЛ) с использованием сопутствующего подсвета передатчиков сетей связи и вещания. Сегодня над проблемой трудятся практически все известные разработчики средств радиолокации.

Задача создания и поддержания сплошного круглосуточного дежурного поля контроля воздушного пространства на предельно малых высотах (ПМВ) сложна и затратна. Причины этого кроются в необходимости уплотнения порядков радиолокационных станций (РЛС), создании разветвлённой сети связи, насыщенности приземного пространства источниками радиоизлучений и пассивных переотражений, сложности орнитологической и метеорологической обстановки, густой населённости, высокой интенсивности использования и противоречивости нормативно-правовых актов, касающихся данной области.

Кроме того, границы ответственности различных министерств и ведомств при осуществлении контроля приземного пространства разобщены. Всё это значительно затрудняет возможности организации радиолокационного мониторинга воздушного пространства на ПМВ.

Зачем нужно сплошное поле мониторинга приземного воздушного пространства

Для каких целей необходимо создание сплошного поля мониторинга приземного воздушного пространства на ПМВ в мирное время? Кто будет основным потребителем получаемой информации?

Опыт работы в данном направлении с различными ведомствами свидетельствует о том, что никто не против создания такого поля, но каждому заинтересованному ведомству необходим (в силу различных причин) свой, ограниченный по целям, задачам и пространственным характеристикам функциональный узел.

Министерству обороны необходимо контролировать воздушное пространство на ПМВ вокруг обороняемых объектов или на определённых направлениях. Пограничной службе - над государственной границей, и не выше 10 метров от земли. Единой системе организации воздушного движения - над аэродромами. МВД - только готовящиеся к взлёту или посадке воздушные суда вне разрешённых районов совершения полётов. ФСБ - пространство вокруг режимных объектов.

МЧС - районы техногенных или природных катастроф. ФСО - районы пребывания охраняемых лиц.

Такое положение свидетельствует об отсутствии единого подхода к решению проблем и угроз, которые ожидают нас в приземной маловысотной среде.

В 2010 году проблема контроля использования воздушного пространства на ПМВ была переведена из поля ответственности государства в поле ответственности самих эксплуатантов воздушных судов (ВС).

В соответствии с действующими Федеральными правилами использования воздушного пространства, для полётов в воздушном пространстве класса G (малая авиация) был установлен уведомительный порядок использования воздушного пространства. С этого времени полёты в этом классе воздушного пространства могут выполняться без получения диспетчерского разрешения.

Если рассматривать данную проблему сквозь призму темы появления в воздухе беспилотных летательных аппаратов, а в недалекой перспективе и пассажирских «летающих мотоциклов», то возникает целый комплекс задач, связанных с обеспечением безопасности использования воздушного пространства на предельно малых высотах над населёнными пунктами, промышленно-опасными районами.


Кто будет контролировать движение в маловысотном воздушном пространстве?

Разработками таких доступных маловысотных средств передвижения занимаются компании во многих странах мира. Например, российская компания «Авиатон» планирует к 2020 году создать собственный пассажирский квадрокоптер для полётов (внимание!) вне аэродромов. То есть там, где не запрещено.

Реакция на данную проблему уже проявилась в виде принятия Государственной думой закона «О внесении изменений в Воздушный кодекс Российской Федерации в части использования беспилотных воздушных судов». В соответствии с этим законом регистрации подлежат все беспилотные летательные аппараты (БЛА) весом более 250 г.

Для того чтобы зарегистрировать БЛА, необходимо подать заявление в Росавиацию в произвольной форме с указанием данных дрона и его собственника. Однако, судя по тому, как обстоят дела с регистрацией пилотируемой лёгкой и сверхлёгкой авиации, представляется, что с беспилотной авиацией проблемы будут такие же. Теперь за регистрацию лёгких (сверхлёгких) пилотируемых и беспилотных воздушных судов отвечают две разные организации, а контроль за правилами их пользования в воздушном пространстве класса G над всей территорией страны не в состоянии организовать никто. Такая ситуация способствует неконтролируемому росту случаев нарушений правил использования маловысотного воздушного пространства и, как следствие, возрастанию угрозы техногенных катастроф и террористических атак.

С другой стороны, созданию и поддержанию широкого поля мониторинга на ПМВ в мирное время традиционными средствами маловысотной радиолокации препятствуют ограничения санитарных требований к электромагнитной нагрузке на население и совместимости РЭС. Существующее законодательство жёстко регламентирует режимы излучений РЭС, особенно в населённых районах. С этим неукоснительно считаются при проектировании новых РЭС.

Итак, что же в сухом остатке? Потребность в мониторинге приземного воздушного пространства на ПМВ объективно сохраняется и будет только возрастать.

Однако возможность её воплощения ограничивается высокой затратностью создания и поддержания поля на ПМВ, противоречивостью правовой базы, отсутствием единого заинтересованного в широкомасштабном круглосуточном поле ответственного органа, а также ограничениями, налагаемыми надзорными организациями.

Необходимо срочно приступить к разработке превентивных мер организационного, правового и технического характера, направленных на создание системы сплошного мониторинга воздушного пространства ПМВ.

Максимальная высота границы воздушного пространства класса G варьируется до 300 метров в Ростовской области и до 4,5 тысячи метров в районах Восточной Сибири. В последние годы в гражданской авиации России наблюдается интенсивный рост числа зарегистрированных средств и эксплуатантов авиации общего назначения (АОН). По состоянию на 2015 год в Государственном реестре гражданских воздушных судов Российской Федерации зарегистрировано свыше 7 тыс. воздушных судов. Следует учесть, что в целом по России зарегистрировано не более 20-30% от общего количества воздушных судов (ВС) юридических лиц, общественных объединений и частных владельцев воздушных судов, использующих летательные аппараты. Остальные 70-80% летают без свидетельства эксплуатанта либо вообще без регистрации воздушных судов.

По оценкам НП «ГЛОНАСС», в России ежегодно продажи малых беспилотных авиационных систем (БАС) увеличиваются на 5-10%, а к 2025 году их в РФ будет приобретено 2,5 млн. Ожидается, что рынок России в части потребительских и коммерческих малых БАС гражданского назначения может составить около 3-5% от общемирового.

Мониторинг: экономичный, доступный, экологически чистый

Если подходить непредвзято к средствам создания сплошного мониторинга ПМВ в мирное время, то решаться данная проблема может доступными, рентабельными и безопасными в санитарном отношении средствами. Строятся такие средства на принципах полуактивной радиолокации (ПАЛ) с использованием сопутствующего подсвета передатчиков сетей связи и вещания.

Сегодня над проблемой трудятся практически все известные разработчики средств радиолокации. Исследовательская группа SNS Research опубликовала доклад «Рынок пассивных радаров для военной и гражданской авиации: 2013-2023» (Military & Civil Aviation Passive Radar Market: 20132023) и ожидает, что к 2023 году объёмы инвестиций в обоих секторах в развитие технологий таких радаров достигнут более 10 млрд долларов США, причём ежегодный рост в период 2013-2023 гг. составит почти 36%.

Простейшим вариантом полуактивной многопозиционной РЛС является двухпозиционная (бистатическая) РЛС, в которой передатчик подсвета и радиолокационный приёмник разнесены на расстояние, превышающее ошибку измерения дальности. Бистатическая РЛС состоит из передатчика сопутствующего подсвета и радиолокационного приёмника, разнесённых на расстояние базы.

В качестве сопутствующего подсвета могут быть использованы излучения передатчиков связных и широковещательных станций как наземного, так и космического базирования. Передатчик подсвета формирует всенаправленное низковысотное электромагнитное поле, находясь в котором цели

С определённой эффективной поверхностью рассеяния (ЭПР) отражают электромагнитную энергию, в том числе и в направлении радиолокационного приёмника. На антенную систему приёмника поступают прямой сигнал источника подсвета и задержанный относительно него эхо-сигнал от цели.

При наличии антенны направленного приёма измеряются угловые координаты цели и суммарная дальность относительно радиолокационного приёмника.

Основой существования ПАЛ являются обширные зоны покрытия сигналами вещания и связи. Так, зоны различных операторов сотовой связи практически полностью перекрываются, взаимно дополняя друг друга. Помимо зон подсвета сотовой связи территорию страны накрывают перекрывающиеся поля излучений передатчиков эфирного вещания ТВ, УКВ ЧМ и FM станций вещания спутникового ТВ и так далее.

Для создания многопозиционной сети радиолокационного мониторинга на ПМВ необходима развёрнутая сеть связи. Такими возможностями располагают выделенные защищённые APN - каналы передачи пакетной информации на основе технологии М2М «телематика». Типовые характеристики пропускной способности таких каналов при пиковой нагрузке не хуже 20 Кб/сек, но по опыту применения практически всегда намного выше.

АО «НПП «КАНТ» ведёт работы по исследованию возможности обнаружения целей в поле подсвета сетей сотовой связи. В ходе исследований было установлено, что наиболее широко покрытие территории РФ осуществляется сигналом связи стандарта GSM 900. Этот стандарт связи предоставляет не только достаточную энергетику поля подсвета, но и технологию пакетной передачи данных GPRS беспроводной связи со скоростью до 170 Кб/сек между элементами многопозиционной РЛС, разнесёнными на региональные расстояния.

Проведённые в рамках НИОКР работы показали, что типовое загородное территориально-частотное планирование сети сотовой связи обеспечивает возможность построения маловысотной многопозиционной активно-пассивной системы обнаружения и сопровождения наземных и воздушных (до 500 метров) целей с эффективной отражающей поверхностью менее 1 кв. м.

Большая высота подвеса базовых станций на антенных башнях (от 70 до 100 метров) и сетевая конфигурация систем сотовой связи позволяют решать задачу обнаружения маловысотных целей, выполненных по малозаметной технологии СТЕЛС, методами разнесённой локации.

В рамках НИОКР для обнаружения воздушных, наземных и надводных целей в поле сетей сотовой связи разработан и испытан обнаружитель пассивного приёмного модуля (ППМ) полуактивной радиолокационной станции.

В результате полевых испытаний макета ППМ в границах сети сотовой связи стандарта GSM 900 с расстоянием между базовыми станциями 4-5 км и мощностью излучения 30-40 Вт достигнута возможность обнаружения на расчётной дальности пролётов самолёта типа Як-52, БЛА - квадракоптера типа DJI Phantom 2, движущегося автомобильного и речного транспорта, а также людей.

В ходе проведения испытаний оценивались пространственно-энергетические характеристики обнаружения и возможности GSM-сигнала по разрешению целей. Продемонстрирована возможность передачи пакетной информации обнаружения и удалённого картографирования информации из района испытаний на вынесенный индикатор наблюдения.

Таким образом, для создания сплошного круглосуточного многочастотного перекрывающегося поля локации в приземном пространстве на ПМВ необходимо и возможно построение многопозиционной активно-пассивной системы локации с объединением потоков информации, получаемых с помощью источников подсвета различного диапазона волн: от метрового (аналоговое ТВ, УКВ ЧМ и FM вещание) до короткого дециметрового (LTE, Wi-Fi). Для этого необходимы усилия всех работающих в данном направлении организаций. Необходимая инфраструктура и обнадёживающие экспериментальные данные для этого имеются. Можно смело утверждать, что наработанная информационная база, технологии и сам принцип скрытой ПАЛ найдут своё достойное место и в военное время.


На рисунке: «Схема бистатической РЛС». Для примера приведена действующая зона покрытия границ Южного федерального округа сигналом оператора сотовой связи «Билайн»

Чтобы оценить масштабы размещения передатчиков подсвета, возьмём для примера среднестатистическую Тверскую область. В ней на площади 84 тысячи кв. км с населением 1 млн 471 тысяча человек действуют 43 радиовещательных передатчика трансляции звуковых программ УКВ ЧМ и FM станций мощностью излучения от 0.1 до 4 кВт; 92 аналоговых передатчика телевизионных станций мощностью излучения от 0.1 до 20 кВт; 40 цифровых передатчиков телевизионных станций мощностью от 0.25 до 5 кВт; 1500 передающих радиотехнических объектов связи различной принадлежности (в основном базовые станции сотовой связи) мощностью излучения от единиц мВт в городской зоне до нескольких сотен Вт в загородной зоне. Высота подвеса передатчиков подсвета варьируется от 50 до 270 метров.


Совершенствование федеральной системы разведки и контроля воздушного пространства: история, реальность, перспективы

В конце XX века вопрос создания единого радиолокационного поля страны стоял достаточно остро. Разноведомственные радиолокационные системы и средства, зачастую дублирующие друг друга и съедающие колоссальные бюджетные средства, не соответствовали требованиям руководства страны и Вооруженных Сил. Необходимость развертывания работ в этой сфере была очевидна.

Началом работ по созданию федеральной системы разведки и контроля воздушного пространства было положено указом президента Российской Федерации 1993 г. «Об организации противовоздушной обороны в Российской Федерации», в котором впервые прозвучало теперь привычное название – федеральная система разведки и контроля воздушного пространства Российской Федерации (ФСР и КВП).

Военно-научным комитетом и управлением радиотехнических войск (РТВ) главного командования Войск ПВО были подготовлены проекты докладов и нормативных правовых документов, которые легли в основу указов президента Российской Федерации 1994 г.«О создании федеральной системы разведки и контроля воздушного пространства Российской Федерации» и «Об утверждении Положения о Центральной межведомственной комиссии федеральной системы разведки и контроля воздушного пространства Российской Федерации».

На ФСР и КВП возлагались следующие задачи:

  • радиолокационная разведка и радиолокационный контроль воздушного пространства Российской Федерации;
  • оперативное управление силами и средствами радиолокационной разведки и радиолокационного контроля воздушного пространства;
  • организация взаимодействия органов управления видов Вооруженных Сил Российской Федерации (ВС РФ) с органами управления воздушным движением;
  • информационное обеспечение систем управления войсками и органов управления воздушным движением;
  • размещение на территории Российской Федерации радиоэлектронной техники на основе единой технической политики.

Информационную основу ФСР и КВП составляли подразделения РТВ ПВО, войск связи и радиотехнического обеспечения ВВС, радиолокационного наблюдения ВМФ, радиолокационные позиции Единой системы организации воздушного движения (ЕС ОрВД). Подразделения радиолокационной разведки Войск ПВО Сухопутных войск могли использоваться по особому распоряжению.

Таким образом, единая радиолокационная система федеральной системы должна была состоять из сил и средств радиолокационной разведки Министерства обороны Российской Федерации и Министерства транспорта Российской Федерации, а также системы управления, сбора и обработки радиолокационной информации, основу которой составляли командные пункты (КП) радиотехнических частей и соединений, разведывательно-информационные центры КП соединений и объединений (районов и зон) ПВО.

В своем развитии ФСР и КВП, как представляли себе ее идеологи, должна была пройти ряд этапов развития, при этом было необходимо максимально использовать потенциал радиолокационной системы ВС РФ:

1-й этап. Подготовительный (1993 г.).

2-й этап. Первоочередные работы по созданию ФСР и КВП (январь – сентябрь 1994 г.).

3-й этап. Развертывание основных элементов ФСР и КВП в зонах ПВО (октябрь – декабрь 1994 г.).

4-й этап. Развертывание информационных элементов двойного назначения и испытания технических средств единой автоматизированной радиолокационной системы – ЕА РЛС (1995–2001 гг.).

5-й этап. Полный переход к ЕА РЛС (2001–2005 гг.).

ФСР и КВП формировалась два десятилетия. Практическая деятельность по созданию федеральной системы началась в октябре 1994 г., когда по поручению президента России начала функционировать центральная межведомственная комиссия ФСР и КВП (ЦМВК) под руководством главнокомандующего Войсками противовоздушной обороны генерал-полковника авиации В. А. Прудникова. У истоков создания федеральной системы стояли профессионалы своего дела, военные и гражданские руководители и специалисты в области ПВО и УВД: В. А. Прудников, В. Г. Шелковников, В. П. Синицын, В. Ф. Мигунов, Г. К. Дубров, А. И. Алешин, А. Р. Балычев, Я. В. Безель, В. И. Мазов, А. С. Сумин, В. П. Жила, В. К. Демедюк, В. И. Ивасенко, В. И. Козлов, С. Н. Карась, В. М. Кореньков, А. Е. Кислуха, Б. В. Михайлов, Б. И. Кушнерук, Н. Ф. Зобов, А. А. Копцев, Р. Л. Данелов, Н. Н. Титаренко, А. И. Травников, А. И. Попов, Б. В. Васильев, В. И. Захарьин и другие.

В ходе первых четырех этапов были созданы и начали работать координационные органы федеральной системы: ЦМВК ФСР и КВП, шесть зональных межведомственных комиссий (по зонам ПВО), две межведомственные комиссии – с правами зональных (в двух районах ПВО на западе и востоке страны).

Были разработаны и утверждены нормативные правовые документы, регламентирующие деятельность по созданию информационных элементов двойного назначения ФСР и КВП в зонах и районах ПВО: «Положение о подразделениях Минобороны России двойного назначения», «Положение о позициях Минтранса России двойного назначения», Генеральное соглашение между Минобороны России и Минтрансом России «О создании, функционировании и эксплуатации подразделений и позиций двойного назначения».

Рис. 1. Оценка сокращения расхода ресурса радиоэлектронной техники РТВ ВВС
Графика Юлии ГОРЕЛОВОЙ

В результате этой работы между уполномоченными структурами Минобороны России и Минтранса России были достигнуты договоренности о создании 30 позиций и 10 подразделений двойного назначения.

Первые практические шаги по созданию информационных элементов двойного назначения федеральной системы были сделаны благодаря настойчивости и энтузиазму специалистов радиотехнических войск (РТВ), которые выполняли функции аппарата ЦМВК, а также предприятий ЕС ОрВД и предприятий оборонно-промышленного комплекса (ОПК).

Опыт информационного взаимодействия военных и гражданских органов управления показал, что применение подразделений двойного назначения РТВ в н. п. Чална, Комсомольск-на-Амуре, Кызыл, Кош-Агач позволило снизить экономические затраты предприятий в интересах решения задач ЕС ОрВД не менее чем на 25–30 процентов. В качестве источников радиолокационной информации использовались РЛС (РЛК) РТВ типа 5Н87, 1Л117 и П-37.

В свою очередь применение ТРЛК-10 и РЛС П-37 на позициях двойного назначения Северо-Кавказского центра АУВД, Хабаровского, Владивостокского, Пермского, Колпашевского центров ОрВД позволило сохранить качество контроля за порядком использования воздушного пространства в границах ответственности за ПВО в условиях сокращения состава и численности РТВ ВВС.

Однако тематика ФСР и КВП, несмотря на очень высокий уровень документов, в соответствии с которыми необходимо было вести работы, финансировалась в рамках государственного оборонного заказа по остаточному принципу. А НИОКР по ФСР и КВП в эти годы были профинансированы на уровне 15 процентов от потребности.


Радиовысотомер ПРВ-13 на одной из площадок полигона Капустин Яр. Предназначался для работы в качестве средства измерения высоты в составе радиолокационного комплекса 5Н87 совместно с другими дальномерами (П-37, П-35М, 5Н84, 5Н84А)
Фото: Леонид ЯКУТИН

По состоянию на 1 июля 1997 г. не удалось заключить ни одного соглашения (локального договора) о создании информационных элементов двойного назначения из-за отсутствия реальных возможностей по взаиморасчетам между военными и гражданскими пользователями радиолокационной информации.

Назрела насущная потребность иметь приоритетное финансирование при создании федеральной системы. Поэтому в декабре 1998 г. была сформирована специальная рабочая группа из представителей аппарата Совета безопасности Российской Федерации, Минобороны России и Федеральной авиационной службы (ФАС) России, которая подготовила аналитическую записку по ФСР и КВП для доклада высшему руководству страны.

В записке отмечалось, что положение с созданием ФСР и КВП представляет не только серьезную угрозу национальной безопасности России, но и является причиной упущенной выгоды от возможных поступлений денежных средств в федеральный бюджет по линии ФАС России от иностранных и отечественных авиакомпаний, использующих воздушное пространство России.

Было констатировано, что ФСР и КВП является национальным достоянием России, одним из важнейших фрагментов единого информационного пространства страны. Ей требовалось оказать незамедлительную и комплексную государственную поддержку.


Рис. 2. Показатели увеличения площади контролируемого воздушного пространства
Графика Юлии ГОРЕЛОВОЙ

Вопрос решался на уровне председателя правительства Российской Федерации Е. М. Примакова. В предельно кратчайшие сроки материалы аналитической записки были рассмотрены на всех уровнях и даны указания по дальнейшим действиям. Минобороны России совместно с заинтересованными ведомствами подготовило и согласовало проекты необходимых документов и в августе 1999 г. был издан указ президента Российской Федерации «О первоочередных мерах государственной поддержки федеральной системы разведки и контроля воздушного пространства Российской Федерации».

Указом были определены государственные заказчики и головной исполнитель работ по совершенствованию единой радиолокационной системы ФСР и КВП. Правительству Российской Федерации поручалось обеспечить разработку и утвердить в 1999 г. Федеральную целевую программу (ФЦП) совершенствования ФСР и КВП на 2000–2010 гг.,предусмотрев финансирование этой программы за счет средств федерального бюджета.

На протяжении нескольких лет проект ФЦП рассматривали, корректировали, уточняли, сокращали, дополняли, но не выносили на рассмотрение правительства. В 2001 г. Главное контрольное управление президента Российской Федерации заинтересовалось тем, как реализованы принятые решения по вопросам создания ФСР и КВП, и провело проверку состояния дел.

Проверка показала, что правительство и ряд министерств (Минобороны России, ФАС России, Минэкономразвития России, Минфином России) не предприняли должных мер по выполнению принятых нормативных правовых актов. Состояние дел по созданию ФСР и КВП было признано неудовлетворительным и не соответствующим требованиям национальной безопасности. Было рекомендовано принять неотложные меры по исправлению создавшегося положения. Однако даже такая жесткая оценка не изменила ситуацию к лучшему.

При этом жизнь не стояла на месте. Войскам и предприятиям по использованию воздушного пространства и управлению воздушным движением необходимо было дать какой-то инструмент для оснащения информационных элементов двойного назначения трассовыми радиолокационными комплексами двойного назначения (ТРЛК ДН).

Специалистами заинтересованных структур Минобороны России, Минтранса России и Минэкономразвития России подготовили проект решения о долевом финансировании оснащения трассовых радиолокационных позиций двойного назначения (ТРЛП ДН), которое главнокомандующим ВВС было представлено на утверждение руководителям Министерства обороны Российской Федерации и Министерства транспорта Российской Федерации.


ПРВ-13 также применялись в составе автоматизированных радиотехнических подразделений объектов АСУ 5Н55М («Межа-М»), 5Н53-Н («Низина-Н), 5Н53-У («Низина-У») системы «Луч-2(3)»,86Ж6 («Поле»), 5Н60 («Основа») системы «Луч-4». ПРВ-13 сопрягались с объектами АСУ «Воздух-1М», «Воздух-1П» (с аппаратурой съема и передачи данных АСПД и аппаратурой приборного наведения «Каскад-М»), с АСУ ЗРВ АСУРК-1МА, АСУРК-1П и кабиной К-9 ЗРС С-200
Фото: Леонид ЯКУТИН

Решение было утверждено в ноябре 2003 г. Начиная с 2004-го предусматривалось финансирование оснащения ТРЛП ДН на принципах долевого участия в рамках государственного оборонного заказа и подпрограммы «Единая система организации воздушного движения» ФЦП «Модернизация транспортной системы России (2002–2010 гг.)».

В качестве оборудования для оснащения ТРЛП ДН был определен ТРЛК ДН «Лира-Т» производства ОАО «Лианозовский электромеханический завод». В соответствии с этим решением, учитывая отсутствие ФЦП по ФСР и КВП, выполнялись работы в течение нескольких лет. Основные технические решения по оснащению ТРЛК ДН «Лира-Т» были проверены в ходе государственных испытаний на ТРЛП ДН Великие Луки. За период 2004–2006 гг. было оснащено более десятка ТРЛП ДН: в 2004 г. – Омолон, Марково, Кепервеем, Певек, м. Шмидта; в 2005 г. – Охотск, Оха, Находка, Архара; в 2006 г. – м. Каменный, Полярный, Дальнереченск, Улан-Удэ.

Проделанная работа позволила иметь к концу 2006 г. 45 информационных элементов двойного назначения (33 процента от утвержденных перечнями). Такой результат был достигнут в немалой степени благодаря активной позиции ЦМВК, которую в разные годы возглавляли действующие главнокомандующие Войск ПВО, а с 1998 г. – ВВС.

Основная нагрузка по организационно-техническому обеспечению деятельности по созданию ФСР и КВП легла на аппарат ЦМВК, функции которого выполняло Управление РТВ. В 2003 г. центром этой очень важной работы стал специально созданный 136-й координационно-нормативный отдел (КНО) ФСР и КВП ВВС.

Руководство отделом было поручено А. Е. Кислухе, который с 1994 г. являлся ответственным секретарем ЦМВК и вел функциональное направление работ по созданию элементов федеральной системы в Управлении РТВ главного командования Войск ПВО, а в дальнейшем – ВВС.

Формирование КНО, конечно, сняло ряд проблем координации работ различных ведомств, однако главной задачи по проведению испытаний технических средств отдел не решал. Вследствие этой и ряда других причин не удалось решить главную задачу технического переоснащения средствами двойного назначения и перехода к ЕА РЛС к 2005 г. Определяющим было отсутствие целевого финансирования работ по научным исследованиям, разработке и серийным поставкам технических средств двойного назначения для совершенствования ФСР и КВП.

Лишь в январе 2006 г. распоряжением правительства Российской Федерации была утверждена концепция ФЦП «Совершенствование федеральной системы разведки и контроля воздушного пространства Российской Федерации на период до 2010 г.», а затем в июне этого же года вышло постановление правительства Российской Федерации № 345 «О федеральной целевой программе «Совершенствование федеральной системы разведки и контроля воздушного пространства Российской Федерации (2007–2010 гг.)».


Трехкоординатная радиолокационная станция боевого режима (сантиметрового диапазона радиоволн) СТ-68УМ
Фото: Леонид ЯКУТИН

Большую работу по подготовке проектов документов провели руководители и специалисты Главного командования ВВС: А. В. Бояринцев, А. И. Алешин, Г. И. Нимира, А. В. Панков, С. В. Гринько, специалисты управления производственно-технологической политики и продукции гражданского назначения (ПТП ПГН) ОАО «Концерн ПВО «Алмаз-Антей»: Г. П. Бендерский, А. И. Пономаренко, Е. Г. Яковлев, В. В. Храмов, О. О. Гапотченко, руководители и специалисты Министерства транспорта Российской Федерации: А. В. Шрамченко, Д. В. Савицкий, Э. А. Войтовский, Н. Н. Титаренко, Н. И. Торба, А. Ломакин, а также руководители и специалисты ФГУП «Госкорпорация по ОрВД»: В. Р. Гульченко, В. М. Либов, К. К. Капля, В. В. Захаров, К. В. Елистратов.

Концепция развития ФСР и КВП Российской Федерации на период до 2015 г. и дальнейшую перспективу определила основные направления организационной, военно-технической и экономической политики по развитию ФСР и КВП в интересах решения задач ВКО, организации воздушного движения и пресечения террористических актов и других противоправных действий в воздушном пространстве Российской Федерации.

В концепции отражены согласованные позиции Министерства обороны Российской Федерации, Министерства транспорта Российской Федерации, а также других заинтересованных федеральных органов исполнительной власти по основным направлениям развития и применения ФСР и КВП в мирное время.

Идеологически была признана новая этапность развития ФСР и КВП. В своем развитии ФСР и КВП должна пройти пять основных этапов:

  • I этап – 1994–2005 гг.;
  • II этап – 2006–2010 гг.;
  • III этап – краткосрочная перспектива (2011–2015 гг.);
  • IV этап – среднесрочная перспектива (2016–2020 гг.);
  • V этап – долгосрочная перспектива (после 2020 гг.).

На I этапе от момента создания ФСР и КВП в основу построения федеральной системы в соответствии с действовавшими на тот период нормативными правовыми документами был положен принцип согласованного применения радиолокационных средств Минобороны России и Минтранса России в районах совместного базирования. Реализация данного принципа достигалась централизованным (единым) планированием применения радиолокационных средств в зонах (районах) ПВО.

При этом обмен информацией о воздушной обстановке между радиотехническими подразделениями двойного назначения (РТП ДН) Минобороны России и районными центрами ЕС ОрВД, а также между радиолокационными позициями двойного назначения (РЛП ДН) Минтранса России и радиотехническими подразделениями ВВС и ВМФ осуществлялся в основном неавтоматизированным способом.

Источником финансирования работ, связанных с созданием и применением подразделений и позиций двойного назначения, являлись средства, получаемые Минтрансом России за счет аэронавигационных сборов, а также средства, выделяемые Минобороны России на строительство и содержание ВС РФ.

Отсутствие механизма целевого финансирования мероприятий по созданию ФСР и КВП не позволило организовать использование информации о воздушной обстановке от РЛП ЕС ОрВД, расположенных в районах, где дежурные по ПВО силы Минобороны России не создают радиолокационное поле. Этот фактор, а также отсутствие информационно-технического взаимодействия (сопряжения) автоматизированных систем органов ЕС ОрВД и ПВО не привели к существенному приросту эффективности функционирования ФСР и КВП.

На II этапе создания и развития ФСР и КВП после долголетних усилий наконец была достигнута гарантированная государственная поддержка мероприятий по развертыванию ФСР и КВП в рамках ФЦП «Совершенствование ФСР и КВП РФ (2007–2010 гг.)».

Было спланировано три основных направления деятельности:

1. Комплексные работы по совершенствованию ФСР и КВП, в том числе:

  • разработка проектной документации информационного взаимодействия центров ЕС ОрВД и органов управления противовоздушной обороны;
  • разработка документации реконструкции центров ЕС ОрВД;
  • разработка проектной документации реконструкции трассовых радиолокационных позиций двойного назначения ЕС ОрВД.

2. Реконструкция трассовых радиолокационных позиций двойного назначения ЕС ОрВД.

3. Реконструкция центров ЕС ОрВД в части оснащения СИТВ с органами управления противовоздушной обороны.

Основная задача ФЦП – создание материально-технической базы ФСР и КВП в Центральном, Северо-Западном и Восточном районах Российской Федерации путем оснащения УЦ ЕС ОрВД системами информационно-технического взаимодействия (СИТВ) с органами управления ПВО, а также модернизации РЛП Минтранса России для выполнения ими функций двойного назначения.

Общая координация деятельности ФСР и КВП на втором этапе ее развития возлагалась на Межведомственную комиссию по использованию и контролю воздушного пространства Российской Федерации, образованную указом президента Российской Федерации 2006 г.

Значительным подспорьем в работе стал выход в 2008 г. указа президента Российской Федерации «О мерах по совершенствованию управления федеральной системой разведки и контроля воздушного пространства Российской Федерации».

Указ юридически закрепил организационно-технические изменения в сфере ФСР и КВП, фактически произошедшие после появления нового координационного органа в лице Межведомственной комиссии по использованию и контролю воздушного пространства Российской Федерации (МВК ИВП и КВП), а также установил, что единственным поставщиком (головным исполнителем) при размещении заказов на поставки товаров, выполнение работ, оказание услуг для государственных нужд в интересах обороны страны и экономики государства в сфере использования, разведки и контроля воздушного пространства Российской Федерации является ОАО «Концерн ПВО «Алмаз-Антей».

В ходе реализации ФЦП большое внимание уделено вопросу создания СИТВ, для достижения эффективности которой была разработана типовая структурная схема СИТВ центров ЕС ОрВД с органами управления и КП ПВО. Схемой предусматривается реализация двух способов выдачи информации о воздушной обстановке от информационных элементов двойного назначения: централизованный и децентрализованный.

Для организации непосредственного взаимодействия центра ЕС ОрВД с органами ПВО из состава боевого расчета дежурной смены КП соединения ПВО назначается диспетчер по взаимодействию. Рабочее место диспетчера по взаимодействию с органами ПВО устанавливается в центре ЕС ОрВД и включает технические средства для отображения радиолокационной и планово-диспетчерской информации и средства для связи с должностными лицами центра ЕС ОрВД и КП соединения ПВО.

Это решение прошло проверку временем (1999–2005 гг.). Так называемое локтевое взаимодействие офицеров органов управления КП ПВО с диспетчерами осуществлялось непосредственно на центрах ЕС ОрВД в зонах ПВО. Предложенные технические решения в рамках ФЦП значительно повышают возможности взаимодействия.

В основу технического решения задачи информационно-технического взаимодействия положен комплекс программно-технических средств (КПТС), позволяющий осуществить прием радиолокационной и планово-диспетчерской информации от автоматизированных систем управления воздушным движением (АС УВД) центров ЕС ОрВД, а также прием, обработку и объединение радиолокационной информации от ТРЛП ДН, входящих в состав центра ЕС ОрВД, для последующей передачи в комплексы средств автоматизации КП ПВО.

В состав технических средств СИТВ также входят выносные комплекты абонентского оборудования (ВКАО), комплексы средств связи и передачи данных о воздушной обстановке (КССПД). Методический аппарат проектирования и оценки индикаторов и показателей ФЦП, использовавшийся при проведении проектирования мероприятий ФЦП, разработан во 2-м ЦНИИ МО РФ, госНИИ «Аэронавигация» и НТЦ «Промтехаэро».

Для выполнения комплекса работ, предусмотренного ФЦП, в ОАО «Концерн ПВО «Алмаз-Антей» была создана кооперация соисполнителей, которая включила в себя более 10 предприятий и организаций. Большой объем работы по основным направлениям деятельности провели Управление ПТП ПГН, МНИИПА, ВНИИРА, фирма «НИТА», НПО «Лианозовский электромеханический завод», НТЦ «Промтехаэро», ЛОТЕС-ТМ, «Радиофизика», госНИИ «Аэронавигация», 24-й НЭИУ и 2-й ЦНИИ МО РФ.

В целях реконструкции ТРЛП ДН на основании требований Минобороны России и Минтранса России в ОАО «НПО «Лианозовский электромеханический завод» был специально разработан и успешно прошел государственные испытания ТРЛК ДН «Сопка-2».

ТРЛК ДН «Сопка-2» предназначен для оснащения радиолокационных позиций двойного назначения Минтранса России и обеспечения радиолокационной информацией ПУ ВС РФ, привлекаемых в мирное время к боевому дежурству по ПВО, для решения задач обнаружения, измерения трех координат, оценки параметров движения, определения государственной принадлежности воздушных объектов, а также получения дополнительной (полетной) информации и приема сигналов «Тревога» («Бедствие») от воздушных судов, находящихся в зоне его действия, и выдачи обобщенной информации о воздушной обстановке на средства отображения или в АС УВД ЕС ОрВД и на КП (ПУ) ВС РФ.

Выполненные в ходе II этапа работы по развертыванию СИТВ в девяти центрах ЕС ОрВД (Московском, Хабаровском, Владивостокском, Петропавловск-Камчатском, Магаданском, Якутском, Ростовском, Санкт-Петербургском, Мурманском) и модернизации 46 РЛП ДН позволили создать в Центральном, Восточном и Северо-Западном регионах страны фрагменты единой радиолокационной системы ФСР и КВП, построенной по принципу информационно-технического взаимодействия ведомственных радиолокационных систем Минобороны России и Минтранса России.

При этом обмен информацией о воздушной обстановке между центрами ЕС ОрВД, оснащенными СИТВ, и КП бригад ВКО осуществляется в автоматизированном режиме, а на большинстве модернизированных позиций развернуты ТРЛК ДН, имеющие в своем составе аппаратуру государственного опознавания ЕС ГРЛО и измерения высоты полета наблюдаемых ВО. Выполненные на II этапе работы по совершенствованию ФСР и КВП позволили увеличить площадь контролируемого Минобороны России воздушного пространства (на высоте 1000 метров) более чем на 1,7 млн. кв. км, сократить расход ресурса радиоэлектронной техники Минобороны России почти на 1,4 млн. часов и обеспечить требуемый уровень безопасности воздушного движения за счет снижения риска катастроф с 13х10 -7 до 4х10 -7 .

Окончание следует.

Александр КИСЛУХА

Размер: px

Начинать показ со страницы:

Транскрипт

1 Научно-технические проблемы развития федеральной системы разведки и контроля воздушного пространства Российской Федерации и пути их решения Генерал-майор А.Я. КОБАН, кандидат технических наук Полковник Д.Н. САМОТОНИН, кандидат технических наук АННОТАЦИЯ. Определены основные научно-технические проблемы и направления развития Федеральной системы разведки и контроля воздушного пространства Российской Федерации и аэронавигационной системы страны в условиях создания воздушно-космической обороны России. КЛЮЧЕВЫЕ СЛОВА: федеральная система разведки и контроля воздушного пространства РФ, аэронавигационная система России, радиотехнические войска, радиолокационное обеспечение, единая автоматизированная радиолокационная система. SUMMARY. Rey scientific and technical problems and areas for developing the RF Federal system of air space reconnaissance and control and Air navigation system of the country in terms of creation of the Aerospace Defense of Russia. KEYWORDS: RF Federal system of air space reconnaissance and control, Air navigation system of Russia, Radio Technical Troops, radar support, unified automated radar system. ФЕДЕРАЛЬНАЯ система разведки и контроля воздушного пространства Российской Федерации (ФСР и КВП РФ) создана на основании Указа Президента Российской Федерации от 14 января 1994 года 146, является межведомственной системой двойного назначения и предназначена для обеспечения радиолокационной информацией о воздушной обстановке пунктов и центров управления (ПУ, ЦУ) Вооруженных Сил Российской Федерации (ВС РФ) в интересах решения задач противовоздушной обороны (ПВО), в том числе задач по охране государственной границы и пресечению террористических актов и других противоправных действий в воздушном пространстве РФ, по обеспечению полетов воздушных судов государственной, экспериментальной и гражданской авиации, а также для радиолокационного обеспечения центров организации воздушного движения аэронавигационной системы РФ (АНС России) за счет комплексного использования имеющихся в ВС РФ и АНС России радиолокационных систем и средств. Информационно-технической основой ФСР и КВП РФ является единая автоматизированная радиолокационная система (ЕАРЛС). Для решения задач, возложенных на ФСР и КВП, в составе ЕАРЛС привлекаются силы и средства радиотехнических частей и подразделений Вооруженных Сил Российской Федерации, а также радиолокационных позиций двойного назначения (РЛП ДН) Федерального агентства воздушного транспорта (Росавиации). В целях развития ЕАРЛС в период с 2007 по 2015 год выполнена федеральная целевая программа «Совершенствование федеральной системы

2 НАУЧНО-ТЕХНИЧЕСКИЕ ПРОБЛЕМЫ РАЗВИТИЯ ФСР И КВП РФ И ПУТИ ИХ РЕШЕНИЯ 15 разведки и контроля воздушного пространства Российской Федерации (гг.)» (далее Программа (), утвержденная постановлением Правительства Российской Федерации от 2 июня 2006 года 345. Анализ итогов реализации Программы () показывает, что заявленные в ней цели по повышению эффективности контроля воздушного пространства, снижению общих затрат на содержание радиотехнических подразделений Минобороны России и повышение безопасности полетов авиации в основном достигнуты. Вместе с тем отсутствие концептуальных и нормативных правовых документов, регламентирующих вопросы функционирования, обеспечения деятельности и развития ФСР и КВП, изменение условий и факторов, влияющих на построение и применение единой радиолокационной системы и системы контроля за использованием воздушного пространства РФ, обусловили ряд научно-технических проблем развития ФСР и КВП на период до 2025 года: недостаточный уровень автоматизации информационно-технического взаимодействия ЦУ (ПУ, КП) ПВО (ВКО) с оперативными органами Единой системы организации воздушного движения (ЕС ОрВД) для реализации эффективной совместной обработки радиолокационной, полетной и плановой информации о воздушной обстановке при решении задач контроля использования воздушного пространства РФ; несоответствие принципов построения и функционирования ЕАРЛС требованиям по ее интеграции с ЕС ОрВД, формированию и поддержанию единого информационного пространства о состоянии воздушной обстановки в условиях создания системы ВКО РФ и АНС России; несоответствие принципов разработки, функционирования и применения в системе управления Воздушно-космических сил (ВКС) средств автоматизации контроля использования воздушного пространства РФ предъявляемым к ним в современных условиях требованиям; несоответствие ТТХ устаревших средств радиолокации современным информационным потребностям Минобороны России при решении возлагаемых на них задач с учетом возрастания угроз безопасности РФ в воздушном пространстве. Сформулированные научно-технические проблемы позволили обосновать следующие основные направления развития ФСР и КВП в условиях создания системы ВКО РФ и АНС России. Первое направление. Разработка новых и модернизация существующих средств разведки (наблюдения) воздушного пространства. Анализ прогнозируемой целевой и помеховой обстановки на период до 2025 года обуславливает необходимость существенного повышения требований к применяемым средствам радиолокации в части их пространственных и информационных возможностей. Учитывая, что вся пилотируемая авиация, а также многие беспилотные средства противника для облегчения преодоления системы ПВО оборудованы передатчиками помех, существенно возрастают требования к помехоустойчивости группировок радиотехнических войск (РТВ). В условиях сокращения временного интервала между обнаружением целей и нанесением по ним удара средствами воздушного нападения (СВН) противника основным способом сохранения группировки РТВ будет маневр силами и средствами радиолокационной разведки. Следовательно, требования к мобильности перспективных РЛС повышаются. Учитывая, что задачи боевого дежурства по ПВО выполняются непрерывно (в мирное и военное время), а условия функционирования средств радиолокации в мирное и военное время отличаются, то и тре-

3 16 А.Я. КОБАН, Д.Н. САМОТОНИН бования к средствам радиолокации дежурного режима мирного и военного времени будут различны. Для решения задач мирного времени необходимы относительно недорогие РЛС с интегрированными средствами вторичной радиолокации и дополнительной аппаратурой автоматического зависимого наблюдения (АЗН-В). Эти средства радиолокации в целях снижения стоимости могут быть стационарными (перевозимыми), но при этом должны обладать высокой надежностью (назначенный ресурс более ста тысяч часов, наработка на отказ тысячи часов), ремонтопригодностью (блочно-модульный принцип построения, встроенная аппаратура диагностики и поиска неисправностей, прогнозирования технического состояния), низкой стоимостью эксплуатации (автоматические, без участия расчета радиолокационные модули). С учетом необходимости использования информации о воздушной обстановке в интересах Минобороны и Минтранса России при решении задач ОрВД данные средства радиолокации должны проходить сертификацию установленным порядком. Одним из основных направлений развития средств радиолокации дежурного режима, выполняющих задачи в мирное время, должно быть доведение их до уровня автоматических РЛС. Данное требование в том числе обусловлено необходимостью воссоздания радиолокационного поля в Арктической зоне РФ. Исходя из условий применения в военное время к радиолокационным средствам дежурного режима, дополнительно предъявляются следующие требования: автоматическая разведка типов помех и адаптация к воздушной и радиоэлектронной обстановке, в том числе возможность концентрации энергии на помехоопасных и других важных направлениях; высокая скрытность работы, обеспечиваемая разработкой пассивных (полуактивных) средств радиолокации; высокая мобильность, обеспечиваемая сокращением времени свертывания (развертывания), включения и контроля функционирования РЛС; автоматическая топопривязка и ориентирование. При этом РЛС дежурного режима, предназначенные для несения боевого дежурства по ПВО в военное время, должны быть многодиапазонными, обеспечивающими при незначительных энергетических затратах требуемые характеристики по дальности обнаружения и точности определения координат СВН противника. С учетом анализа потенциальных угроз РФ в воздушно-космической сфере возрастает актуальность обнаружения СВН, действующих на малых и предельно-малых высотах. Различия по условиям и задачам применения маловысотных РЛС предопределяют их деление на РЛС дежурного и боевого режима. Основными требованиями, предъявляемыми к перспективным маловысотным РЛС дежурного режима, являются: возможность обнаружения и сопровождения низколетящих, малоразмерных и не скоростных воздушных целей (КР, БЛА, дельтапланов и др.) на фоне интенсивных отражений от земли, местных предметов, гидрометеообразований, преднамеренных пассивных и несинхронных импульсных помех; наличие в составе радиолокационных комплексов (РЛК) удаленных радиолокационных модулей, размещенных вне подразделений РТВ и работающих в автоматическом режиме; возможность размещения антенных систем на высотных опорах (в отдельных случаях на привязных аэростатах). К маловысотным РЛС боевого режима прежде всего предъявляются требования высокой маневренности, достаточного энергети-

4 НАУЧНО-ТЕХНИЧЕСКИЕ ПРОБЛЕМЫ РАЗВИТИЯ ФСР И КВП РФ И ПУТИ ИХ РЕШЕНИЯ 17 ческого потенциала с возможностью его концентрации в заданном направлении (секторе), повышенной точности измерения координат и возможности обнаружения целей с малой эффективной поверхностью рассеивания (ЭПР). Одним из основных требований, предъявляемых к перспективным РЛС, является необходимость их сопряжения с действующими и перспективными комплексами средств автоматизации, а также возможность интеграции в единое информационное пространство о состоянии воздушной обстановки. Это предусматривает в том числе применение унифицированных протоколов обмена информацией о состоянии воздушной обстановки, объединение радиолокационной информации из различных источников о воздушных объектах, обмен данной информацией на более высоких скоростях с использованием средств создаваемой цифровой телекоммуникационной сети Минобороны России. Второе направление. Полномасштабное развертывание ЕАРЛС ФСР и КВП и ее комплексная модернизация в интересах повышения эффективности использования радиолокационной, полетной и плановой информации, получаемой от органов ЕС ОрВД, для решения задач ПВО. Полномасштабное развертывание ЕАРЛС и ее комплексная модернизация предусматривают: оснащение (переоснащение) радиотехнических подразделений современными и перспективными РЛС (РЛК); модернизацию трассовых радиолокационных позиций двойного назначения Росавиации путем развертывания на них новых РЛК ДН, а также реконструкцию центров ЕС ОрВД, в том числе в интересах совершенствования межведомственного информационно-технического взаимодействия; создание и развертывание унифицированных автоматических модулей программно-технических средств (МПТС), обеспечивающих автоматический обмен плановой, радиолокационной и дополнительной информацией с использованием унифицированных протоколов информационно-технического взаимодействия трассовых радиолокационных позиций двойного назначения и центров ЕС ОрВД с ЦУ (ПУ, КП) ВС РФ. Для обеспечения информационно-технического взаимодействия по цифровым каналам и с использованием унифицированных протоколов со стороны объектов Минобороны России предусмотрены закупки перспективных комплексов средств автоматизации (КСА), что в совокупности обеспечит повышение эффективности совместной обработки радиолокационной, полетной и плановой информации на командных пунктах радиотехнических полков. Третье направление. Поэтапное создание интегрированной радиолокационной системы ФСР и КВП в интересах формирования единого информационного пространства о состоянии воздушной обстановки с использованием ресурсов развернутой ЕАРЛС. Реализация направления организована путем оснащения радиотехнических полков комплексами автоматических средств, разработанных в рамках опытно-конструкторской работы (ОКР) «Наблюдатель ФСР и КВП», и интеграции на их основе всех источников радиолокационной информации Минобороны России и Росавиации, дислоцированных в границах позиционного района радиотехнического полка. Четвертое направление. Организация единой системы автоматизированного контроля использования воздушного пространства РФ (ЕСКИВП) в системе управления ВКС. Реализацию этого направления планируется осуществить в рамках государственной программы вооружения, предусматривающей разработку и принятие на вооружение унифицированных МПТС автоматизации решения задачи контроля использования

5 18 А.Я. КОБАН, Д.Н. САМОТОНИН воздушного пространства РФ. МПТС предназначены для совместного применения с КСА ЦУ (ПУ, КП) объединений ВКС, соединений ПВО, воинских частей РТВ в интересах повышения качества решения задачи контроля использования воздушного пространства на основе реализации современных системотехнических принципов обмена и обработки информации, поступающей от центров ЕС ОрВД и ПУ радиотехнических войск. МПТС разрабатывается в различных комплектациях с открытым интерфейсом информационно-технического сопряжения для применения на всех уровнях управления при автоматизированном решении задачи контроля использования воздушного пространства совместно с существующими и перспективными комплексами средств автоматизации. Таким образом, в решении основных научно-технических проблем в период до 2025 года можно выделить два этапа годы комплексная модернизация ЕАРЛС во всех регионах РФ, создание головного участка совместного применения интегрированной радиолокационной системы (ИРЛС) ФСР и КВП и ЕСКИВП годы полномасштабное развертывание ИРЛС и ЕСКИВП во всех регионах страны. Успешная реализация этапов развития ФСР и КВП возможна при безусловном выполнении мероприятий ГПВ и своевременной разработке (уточнении) концептуальных и нормативных правовых документов, регламентирующих вопросы построения, функционирования, обеспечения деятельности и развития ФСР и КВП.


ОБЗОРНАЯ ДВУХКООРДИНАТНАЯ РЛС метрового диапазона П-18Т/TRS-2D назначение РЛС П-18Т/TRS-2D является импульсной когерентной радиолокационной станцией метрового диапазона и предназначена для обнаружения

МИНИСТЕРСТВО ОБОРОНЫ РЕСПУБЛИКИ БЕЛАРУСЬ ПОСТАНОВЛЕНИЕ Об утверждении Авиационных правил организации радиолокационного обеспечения полетов государственной авиации Республики Беларусь 26 октября 2015 г.

ПЕРСПЕКТИВЫ РАЗВИТИЯ СИСТЕМЫ СВЯЗИ И АВТОМАТИЗИРОВАННЫх СИСТЕМ УПРАВЛЕНИЯ ВООРУЖЕННЫх СИЛ РОССИЙСКОЙ ФЕДЕРАЦИИ Евгений Робертович Мейчик НАЧА ЛьНИК СВязИ ВООРУ женных СИЛ РОССИЙСКОЙ ФЕДЕРАЦИИ заместитель

Радиолокация на современном этапе. Возможные пути развития поэтапная модернизация и создание унифицированных блочномодульных комплектаций. Боевые действия в военных конфликтах второй половины XX-го и наступившего

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРА -НСПОРТА (РОСАВИАЦИЯ) ПРИКАЗ Москва &Jt Об утверждении Положения об Управлении радиотехнического обеспечения полетов и

Перспективы развития системы связи и АСУ Вооруженных Сил Российской Федерации Н а ч а л ь н и к Г л а в н о г о у п р а в л е н и я С в я з и В о о р у ж е н н ы х С и л Р о с с и й с к о й Ф е д е р а

Трёхкоординатная средних и больших высот дежурного режима НАЗНАЧЕНИЕ предназначена для обнаружения, измерения трёх координат, сопровождения, определения государственной принадлежности воздушных объектов

ВНЕДРЕНИЕ ИКТ В СЛУЖЕБНО-БОЕВУЮ ДЕЯТЕЛЬНОСТЬ ВНУТРЕННИХ ВОЙСК МВД РОССИИ н а ч а л ь н и к У п р а в л е н и я с в я з и и а в т о м а т и з и р о в а н н о г о у п р а в л е н и я в о й с к а м и Г К

СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ВОЕННОЙ СВЯЗИ В РОССИЙСКОЙ ФЕДЕРАЦИИ Начальник связи Вооруженных Сил Российской Федерации з а м е с т и т е л ь н а ч а л ь н и к а Г е н е р а л ь н о г о ш т а б а В

Работа по созданию сплошного радиолокационного поля РФ. Оснащение Вооруженных Сил России радиолокационными станциями (РЛС) высокой заводской готовности «Воронеж-ДМ» идѐт с опережением графика. Об этом

ПОСТАНОВЛЕНИЕ МИНИСТЕРСТВА ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ 31 июля 2017 г. 98 О внесении изменений и дополнений в постановление Министерства образования Республики Беларусь от 30 августа 2013 г. 88 На

64 Bозможности оборонно-промышленного комплекса России по созданию перспективных огневых систем ПРО Игорь КОРОТЧЕНКО Главный редактор журнала «Национальная оборона» Основной задачей, которую решают войска

Войска воздушно-космической ОБОРОНЫ НАДЕЖНЫЙ щит страны в воздухе и КОСМОСЕ Александр Валентинович Головко ком андующий ВойСК АМИ ВОзД У ШНО-КОСМИЧЕСКОй ОБОРОНЫ, ГЕНЕРА Л-ЛЕйТЕНАНТ Войска воздушно-космической

Космические войска Космические войска являются родом войск Воздушно-космических сил Космические войска решают широкий спектр задач, основными из которых являются: - наблюдение за космическими объектами

ГЕОПОЛИТИКА И БЕЗОПАСНОСТЬ Глобальный мониторинг космической обстановки важнейшее направление обеспечения военной безопасности Российской Федерации в воздушно-космической сфере Полковник А.Н. КАЛЮТА АННОТАЦИЯ.

ПЕЧОРА-2ТМ Зенитный ракетный комплекс ЗРК средней дальности С-125-2ТМ «Печора-2ТМ» ЗРК С- 125-2ТМ «Печора -2ТМ» предназначен для борьбы с современными и перспективными средствами воздушного нападения в

МНОГОФУНКЦИОНАЛЬНЫЙ КОМПЛЕКС ТЕХНИЧЕСКИХ СРЕДСТВ ДЛЯ РЕШЕНИЯ ЗАДАЧ РАДИОЛОКАЦИОННОГО ОБЕСПЕЧЕНИЯ, РАДИОНАВИГАЦИИ И РАДИОПРОТИВОДЕЙСТВИЯ В ЛОКАЛЬНОЙ ОБЛАСТИ Яцкевич В. А., ООО «Специальные радиосистемы

А.М. Мухаметжанов¹, О.С. Ишутин² Современные подходы в управлении военно-медицинской службой ¹Военная кафедра Карагандинской государственной медицинской академии. Республика Казахстан. ²Военно-медицинское

Перспективы развития икт в интересах системы управления Вооруженных Сил Российской Федерации Начальник Управления заказов и поставок автоматизированных систем управления, информационных систем, комплексов

НовЫЕ АСПЕКты военно-технической ПОЛИтИКИ РОССИЙСКОЙ ФЕДЕРАцИИ в современных условиях Сергей Кужугетович Шойгу МИНИСТР ОБОРОНЫ РОССИйСКОй ФЕДЕРАЦИИ, ГЕНЕРА Л АРМИИ В настоящее время научно-технический

УПРАВЛЕНИЕ ПРЕСС-СЛУЖБЫ И ИНФОРМАЦИИ МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ 1 СОДЕРЖАНИЕ РОССИЯ В СОВРЕМЕННОМ МИРЕ. ВЫЗОВЫ И УГРОЗЫ... 3 УПРАВЛЕНИЕ ВОЙСКАМИ (СИЛАМИ) И ОРУЖИЕМ. МОДЕЛИРОВАНИЕ ВОЕННЫХ

Соколов Никита Вячеславович студент ФГАОУ ВО «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики» г. Санкт-Петербург Степаненко Кирилл Васильевич

Основы боевого применения ПВО Взаимодействие родов войск Истребительная авиация Радиотехнические войска Зенитно-ракетные войска Взаимодействие родов войск ПВО Выполнение боевой задачи по охране и обороне

УЧЕБНАЯ ПРОГРАММА по учебной дисциплине «Военно-техническая подготовка» по военно-учетной специальности Эксплуатация и ремонт радиотехнических средств наведения зенитных ракетных комплексов противовоздушной

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» УТВЕРЖДАЮ Первый проректор Учреждения образования «Белорусский государственный университет информатики и

Буренок В.М., доктор технических наук, профессор Москаленко В.И., кандидат технических наук Соломенин Е.А. Направления развития системы опознавания Рассмотрены вопросы построения перспективной системы

С.С. Смирнов, кандидат технических наук, доцент В.Л. Лясковский, доктор технических наук, профессор Д.В. Нестеров Методика формирования программных мероприятий по созданию технологий и образцов оружия

Совершенствование организационной структуры военной составляющей Единой системы организации воздушного движения Российской Федерации Аннотация. В статье на фоне совершенствования организационной структуры

Структура и состав пункта управления тылом войск национальной гвардии Российской Федерации. Дементьев Дмитрий Николаевич капитан, слушатель 116 ВНГ учебного отделения Военная академия материально-технического

К ВОПРОСУ РАЗВИТИЯ ВООРУЖЕНИЯ, ВОЕННОЙ И СПЕЦИАЛЬНОЙ ТЕхНИКИ РАКЕТНЫх ВОЙСК И АРТИЛЛЕРИИ СУхОПУТНЫх ВОЙСК В СОВРЕМЕННЫх УСЛОВИЯх Александр Викторович Кочкин заместитель НАЧА ЛьНИК А ГЛАВНОГО РАКЕТНО-АРТИЛЛЕРИЙСКОГО

УДК 623.418.2 МЕТОДИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ ИМИТАТОРА-ТРЕНАЖЕРА РАБОЧИХ МЕСТ ЗРК ДД-СД ДЛЯ ПОДГОТОВКИ СПЕЦИАЛИСТОВ ПО ЭКСПЛУАТАЦИИ РАДИОТЕХНИЧЕСКИХ СРЕДСТВ НАВЕДЕНИЯ ЗРК ПВО ВВС Тимофеев Г.Г., студент

25/8/03 ОДИННАДЦАТАЯ АЭРОНАВИГАЦИОННАЯ КОНФЕРЕНЦИЯ Монреаль, 22 сентября 3 октября 2003 года Пункт 1 повестки дня. Пункт 1.2 повестки дня. Представление и оценка глобальной эксплуатационной концепции организации

ПОСТАНОВЛЕНИЕ СОВЕТА МИНИСТРОВ РЕСПУБЛИКИ КРЫМ от 24 февраля 2015 года 65 О поддержании сил и органов управления гражданской обороны в готовности к действиям В соответствии с Федеральным законом от 12

ПРИОРИТЕТНЫЕ НАПРАВЛЕНИЯ РАЗВИТИЯ ВОЕННО-КОСМИчЕСКОЙ ДЕЯТЕЛЬНОСТИ РОССИИ В СОВРЕМЕННЫх УСЛОВИЯх Олег Николаевич Остапенко КОМ АНДУЮщИЙ КОСМИЧЕСКИМИ ВОЙСК АМИ, ГЕНЕРА Л-М АЙОР Современные мировые тенденции

Проблемы нормативно-правового обеспечения применения комплексов с БЛА Управление авиации и авиационно-спасательных технологий МЧС России, заместитель начальника отдела, к.т.н. Н.Н. Олтян 1 Управление авиации

ПРИКАЗ МИНИСТРА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ 150 30 апреля 2007 г. г. Москва Об утверждении Федеральных авиационных правил по штурманской службе государственной авиации В соответствии с постановлением

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИСПЫТАТЕЛЬНЫЙ ЦЕНТР ЦЕНТРАЛЬНОГО НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА ВОЙСК ВОЗДУШНО-КОСМИЧЕСКОЙ ОБОРОНЫ МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ Научно-исследовательский испытательный

РОЛь военных технологий в РАзвитИИ СИСтЕМЫ вооружения вооруженных СИЛ РОССИЙСКОЙ ФЕДЕРАцИИ Сергей Егорович Панков нача льник У ПРАВЛЕНИ я ПЕРСПЕКТИВНЫХ МЕжВИ ДОВЫХ ИССЛЕДОВАНИй и СПЕЦИА ЛьНЫХ ПРОЕКТОВ

Приложение 14 Основные направления взаимодействия и пути информационно-технического сопряжения АСРК-РФ ФГУП «РЧЦ ЦФО» с Единой системой комплексного технического контроля Вооруженных Сил Российской Федерации

А. В. Леньшин, Н. М. Тихомиров, С. А. Попов БОРТОВЫЕ РАДИОЭЛЕКТРОННЫЕ СИСТЕМЫ Учебное пособие Под редакцией доктора технических наук А. В. Леньшина Рекомендовано УМО по образованию в области эксплуатации

О Т З Ы В официального оппонента на диссертационную работу Фитасова Евгения Сергеевича «Пространственно-временная обработка сигналов в малогабаритных мобильных радиолокационных системах обнаружения низколетящих

В.Г. Найденов доктор технических наук старший научный сотрудник Е.В. Першин Постановка задачи определения оптимального типажа средств экспериментально-испытательной базы полигона Минобороны России для

КОРАБЕЛЬНЫЕ АСУ: МЕТОДОЛОГИЯ СОЗДАНИЯ СИСТЕМ, ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, СРЕДСТВ И КОМПОНЕНТОВ УДК 681.324 В.А. Ильин, И.Л. Козлов АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ ПРОТИВОВОЗДУШНОЙ ОБОРОНОЙ КОРАБЛЕЙ. ФУНКЦИОНАЛЬНЫЙ

ПОСТАНОВЛЕНИЕ МИНИСТЕРСТВА ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ 8 июля 2015 г. 79 О внесении изменений и дополнений в некоторые постановления Министерства образования Республики Беларусь На основании пункта

АДМИНИСТРАЦИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ ГОРОДСКОГО ОКРУГА «СЫКТЫВКАР» «СЫКТЫВКАР» КАР КЫТШЛÖН МУНИЦИПАЛЬНÖЙ ЮКÖНСА АДМИНИСТРАЦИЯ ПОСТАНОВЛЕНИЕ ШУÖМ от г. Сыктывкар, Республика Коми Об утверждении положения

II. Аннотация 1. Цели и задачи дисциплины Целью освоения дисциплины является формирование и развитие у обучающих профессиональных компетенций, обеспечивающих исполнение ими первичных научных должностей

ПОВЫШЕНИЕ ПОМЕХОЗАЩИЩЕННОСТИ РЛС С АФАР ЗА СЧЕТ СИСТЕМЫ ВСТРОЕННОГО КОНТРОЛЯ 1. Обеспечение помехозащищенности системы во многом определяется характеристиками антенной системы, входящей в состав РЛС, т.к.

Зарегистрировано в Национальном реестре правовых актов Республики Беларусь 20 марта 2012 г. N 5/35415 ПОСТАНОВЛЕНИЕ СОВЕТА МИНИСТРОВ РЕСПУБЛИКИ БЕЛАРУСЬ 16 марта 2012 г. N 234 О НЕКОТОРЫХ МЕРАХ ПО РЕАЛИЗАЦИИ

ПерсПектиВЫ развития системы радиоэлектронной БорЬБЫ российской ФедерАЦии на Период до 2020 ГодА Михаил Валерьевич Доскалов НАЧА ЛьНИК ВОйСК РА ДИОЭЛЕКТРОННОй БОРьБы ВООРУЖЕННыХ СИЛ РОССИйСКОй ФЕДЕРАЦИИ,

УДК 623.76(092) Я. В. Безель, 2015 Этапы развития автоматизированных систем управления авиацией и ПВО Приводится краткий обзор работ, выполненных в НИИ-5 (МНИИПА) в 1923 2010 гг. по созданию и совершенствованию

Подходы к обеспечению безопасного применения БАС Текущая ситуация в области применения беспилотных аппаратов Стремительный рост бесконтрольно используемых беспилотных аппаратов в России и в других странах

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ Р А С П О Р Я Ж Е Н И Е от 9 ноября 2017 г. 2478-р МОСКВА 1. Утвердить прилагаемый план мероприятий по реализации Стратегии обеспечения единства измерений в до 2025 года.

Анализ современного состояния обороннопромышленного комплекса Республики Казахстан и перспективы его развития Талгат Женисович Жанжуменов Заместитель Министра обороны Республики К аза хстан, генера л-м

56 Bоздушно-космическая оборона России: история создания и основные задачи 57 Николай ЛЯХОB Полковник в отставке, кандидат технических наук, старший научный сотрудник, с 2003 по 2007 гг. заместитель начальника

УДК 629.733.34 Технические науки Мешкова Е.В., Митрошина Е.В. студентки 4 курса электротехнического факультета, Пермский национальный исследовательский политехнический университет ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ

ПОСТАНОВЛЕНИЕ СОВЕТА МИНИСТРОВ РЕСПУБЛИКИ БЕЛАРУСЬ 23 августа 1999 г. N 1308 О ГОСУДАРСТВЕННОМ РЕГУЛИРОВАНИИ И ОРГАНИЗАЦИИ ИСПОЛЬЗОВАНИЯ ВОЗДУШНОГО ПРОСТРАНСТВА РЕСПУБЛИКИ БЕЛАРУСЬ [Изменения и дополнения:

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ П О С Т А Н О В Л Е Н И Е от 18 ноября 2014 г. 1215 МОСКВА О порядке разработки и применения систем управления безопасностью полетов воздушных судов, а также сбора и

В соответствии с Указом Президента Российской Федерации от 7.05.2012 603 «О реализации планов (программ) строительства и развития Вооруженных Сил Российской Федерации, других войск, воинских формирований

УДК 623.4 М.Ю. Трубин НЕОБХОДИМОСТЬ СОВЕРШЕНСТВОВАНИЯ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ НАДВОДНЫХ КОРАБЛЕЙ ВМФ, ТЕНДЕНЦИИ РАЗВИТИЯ Трубин Максим Юрьевич, окончил факультет АСУ ВМИРЭ им. А.С. Попова.

Код УДК: 355/359 2016г Качалков А.Д., магистрант Уральский институт управления - филиал Российской академии народного хозяйства и государственной службы при Президенте Российской Федерации, РАНХиГС, г.екатеринбург

Российская Федерация Новгородская область, Мошенской район Администрация Калининского сельского поселения П О С Т А Н О В Л Е Н И Е от 22.02.2013 25 д. Новый Поселок О внесении изменений в Положение о

1. Основные положения по управлению ГО. 2. Пункты управления: предназначение, размещение, оснащение, системы жизнеобеспечения, организация работы на пункте управления. 3. Штаб ГО и возлагаемые на него

Структура Вооруженных Сил Республики Казахстан Силы Воздушной Обороны Военно-морские силы Аэромобильные войска Ракетные войска и артиллерия Региональные командования Тыл ВС РК Специальные войска Военные-учебные

Государственной программе вооружения эффективные методы контроля и управления Сергей Владимирович Хуторцев Директор Департамента мобилизационной подготовки экономики РФ и формирования госуд арственного

Возможные решения задачи мониторинга воздушного движения на малых высотах Гринченко О.Т. Начальник Северо-Западного межрегионального территориального управления воздушного транспорта Федерального агентства

УДК 65.011.56 В.Г. Тодуров ПЕРСПЕКТИВА СОЗДАНИЯ ЭКСПОРТНЫХ ОБРАЗЦОВ КОМПЛЕКСНЫХ СИСТЕМ ОХРАНЫ И ОБОРОНЫ МОРСКИХ ПРОСТРАНСТВ ПРИБРЕЖНЫХ СТРАН Тодуров Владимир Григорьевич, кандидат технических наук, окончил

Связь и автоматизированное управление важнейшее условие руководства спасательными силами Н а ч а л ь н и к У п р а в л е н и я з а щ и т ы и н ф о р м а ц и и и о б е с п е ч е н и я б е з о п а с н о

2013 НАУЧНЫЙ ВЕСТНИК МГТУ ГА 189 УДК 629.735.017.1 ВЫБОР МЕТОДОВ АНАЛИЗА НАДЁЖНОСТИ ДЛЯ ТЕХНИЧЕСКИХ СРЕДСТВ АЭРОНАВИГАЦИОННОЙ СИСТЕМЫ О.В. МИЩЕНКО, А.А. АПАНАСОВ Статья представлена доктором технических

Изобретения относятся к области радиолокации и могут применяться при контроле пространства, облучаемого внешними источниками радиоизлучения. Техническим результатом заявляемых технических решений является сокращение времени работы РЛС в активном режиме за счет увеличения времени ее работы в пассивном режиме. Сущность изобретения заключается в том, что контроль воздушного пространства, облучаемого внешними источниками излучения, осуществляется путем обзора пространства активным каналом радиолокационной станции только тех направлений зоны обзора, в которых отношение отраженной объектом энергии внешнего радиоэлектронного средства к шуму больше порогового значения, для этого предварительно принимают отраженную объектом энергию внешнего радиоэлектронного средства, время ожидания облучения которым осматриваемого направления наименьшее и не превышает допустимого значения. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретения относятся к области радиолокации и могут применяться при контроле пространства, облучаемого внешними источниками радиоизлучения.

Известен способ активной радиолокации объектов, заключающийся в излучении зондирующих сигналов, приеме отраженных сигналов, измерении времени запаздывания сигналов и угловых координат объектов, вычислении дальности до объектов (Теоретические основы радиолокации, под ред. Я.Д.Ширмана, М., "Сов. радио", 1970, стр.9-11).

Известна радиолокационная станция (РЛС), реализующая известный способ, содержащая антенну, антенный переключатель, передатчик, приемник, индикаторное устройство, синхронизатор, при этом сигнальный вход/выход антенны соединен с антенным переключателем, вход которого соединен с выходом передатчика, а выход - с входом приемника, выход приемника, в свою очередь, соединен с входом индикаторного устройства, два выхода синхронизатора соединены с входом передатчика и вторым входом индикаторного устройства соответственно, координатный выход антенны соединен с третьим входом индикаторного устройства (Теоретические основы радиолокации, под ред. Я.Д.Ширмана, М., "Сов. радио", 1970, стр.221).

Недостаток известного способа и реализующего его устройства состоит в том, что излучение радиолокационных сигналов осуществляется в каждом направлении контролируемой зоны. Такой способ делает РЛС чрезвычайно уязвимой по отношению к противорадиолокационным средствам, так как при непрерывной работе РЛС велика вероятность обнаружения ее сигналов, определения направления на РЛС и поражения противорадиолокационными средствами. Кроме того, возможность концентрации энергии в каких либо областях контролируемой зоны для обеспечения обнаружения малозаметных целей или для обнаружения целей при действии активных помех весьма ограничена. Она может быть проведена только за счет уменьшения энергии, излучаемой в другие направления зоны.

Известно, что в качестве источников излучения могут использоваться источники, не входящие в состав РЛС. Такие источники излучения принято называть "внешними" (Гладков В.Е., Князев И.Н. Обнаружение воздушных целей в электромагнитном поле внешних источников излучения. "Радиотехника", вып.69, с.70-77). Внешними источниками радиоизлучения могут быть РЛС сопредельных государств и другие радиоэлектронные средства (РЭС).

Наиболее близкий способ контроля пространства, облучаемого внешними источниками излучения, включает обзор пространства с помощью РЛС, дополнительный прием отраженной объектом энергии внешнего РЭС, определение границ зоны, в которой отношение отраженной энергии РЭС к шуму Q больше порогового значения Q пор, и излучение энергии только в те направления зоны, в которых обнаружена отраженная энергия РЭС (Патент РФ №2215303, 28.09.2001 г.).

Устройством, наиболее близким к заявляемому, является радиолокационная станция (фиг.1), содержащая пассивный и активный каналы, блок вычисления координат, при этом пассивный канал включает последовательно соединенную приемную антенну и приемник, активный канал включает последовательно соединенные антенну, антенный переключатель, приемник и устройство вычисления дальности, а также синхронизатор и передатчик, выход которого соединен со входом антенного переключателя, причем первый и второй выходы синхронизатора соединены соответственно со входом передатчика и вторым входом устройства вычисления дальности (Патент РФ №2226701, 13.03.2001 г.).

Суть известного способа состоит в следующем.

Для используемого РЭС рассчитывают величину отношения отраженной объектом энергии к шуму (т.е. отношение сигнал/шум) в точке приема по формуле (Бляхман А.Б., Рунова И.А. Бистатическая эффективная площадь рассеяния и обнаружения объектов при радиолокации на просвет. "Радиотехника и электроника", 2001. том 46, №4, формула (1) на с.425):

где Q=P c /P ш - соотношение сигнал/шум;

P T - средняя мощность передающего устройства;

G T , G R - коэффициенты усиления передающей антенны РЭС и приемной антенны РЛС соответственно;

λ - длина волны;

η - обобщенные потери;

σ(α B ,α Г) - ЭПР объекта для двухпозиционной системы как функция от вертикального и горизонтального углов дифракции α B и α Г соответственно; под углом дифракции понимают угол между направлением облучения и линией, соединяющей объект и точку наблюдения;

F T (β,θ), F R (β,θ) - диаграммы направленности передающей антенны РЭС и приемной антенны РЛС соответственно;

Р ш - средняя мощность шумов в полосе приемного устройства;

R T , R R - расстояние соответственно от РЭС и приемного устройства до объекта.

Рассчитывают угловые границы зоны по вертикали и горизонтали, в которых значения соотношения сигнал/шум Q не менее порогового Q ПОР. Величина порога Q ПОР выбирается исходя из требуемой надежности обнаружения отраженной объектом энергии РЭС.

В пределах рассчитанных таким образом границ зону осматривают в пассивном режиме (в диапазоне частот выбранного РЭС). Активный режим при этом не используется. Если в некотором направлении осматриваемой части зоны измеренная энергия РЭС имеет уровень не менее порогового, то это направление осматривают в активном режиме. При этом излучается зондирующий сигнал, осуществляется обнаружение объекта и измерение его координат. После чего продолжают осмотр в пассивном режиме.

Таким образом, число направлений зоны, осматриваемых в активном режиме, сокращается. За счет этого в некоторых направлениях зоны может быть увеличена концентрация излучаемой энергии РЛС, что повышает надежность обнаружения объекта.

Недостаток известных технических решений состоит в следующем.

Как известно, внешние источники излучения, например РЛС, расположенные на территории сопредельных государств, характеризуются для внешнего наблюдателя случайностью излучений во времени. Поэтому использование таких источников, облучающих осматриваемый участок зоны достаточным уровнем мощности, как правило, требует большого времени ожидания облучения.

Можно показать, что при использовании в качестве внешнего 1-го источника внешней РЛС, в том числе расположенной на территории сопредельного государства, время ожидания облучения t i осматриваемого направления будет определяться выражением:

где Δα i , Δβ i - угловой размер совокупности частей ДНА i-й внешней РЛС, уровень излучения которых обеспечивает Q≥Q ПОР;

ΔA i ; ΔB i - угловой размер зоны обзора внешней РЛС;

Т i - период обзора пространства i-й внешней РЛС.

Для случая, когда выполнение условия Q≥Q ПОР обеспечивается только главным лучом ДНА i-й внешней РЛС (что имеет место в прототипе), т.е. Δα i Δβ i =Δα i0 Δβ i0 , где Δα i0 Δβ i0 - угловые размеры главного луча ДНА i-ой внешней РЛС, с учетом того, что угловые размеры зоны обзора внешней РЛС (ΔA i ,ΔB i) значительны, справедливо:

и t i →T i .

Отсюда следует, что поскольку для современных обзорных РЛС период обзора составляет Т i =5÷15 с и жестко ограничен, то их использование в качестве внешних РЛС при одноканальном способе обзора практически исключается, так как обзор пространства, состоящего из десятков тысяч направлений, при затратах на осмотр каждого направления 5÷15 с недопустим.

Кроме того, современные РЛС работают в широком диапазоне частот, имеют большое число типов сигналов, параметры которых хотя и известны, но требуют для приема большее число каналов.

К современным РЛС предъявляются требования по обеспечению обзора пространства последовательно во времени без дополнительной остановки луча, т.е. "на проходе". В связи с тем, что моменты облучения зоны главным лучом внешней РЛС и моменты приема излучения радиолокационной станцией в этих же направлениях совпадают редко, достигаемое время работы РЛС в пассивном режиме в целом по зоне обзора оказывается небольшим. Соответственно значительным оказывается время ее работы в активном режиме. В наиболее близких технических решениях при использовании в качестве источников излучения внешних РЛС подавляющую часть времени РЛС работает на излучение практически во всей зоне обзора, что, как отмечалось, увеличивает ее уязвимость по отношению к противорадиолокационным средствам противника и ограничивает возможности концентрации энергии. Это является недостатком наиболее близких технических решений.

Таким образом, решаемой задачей (техническим результатом) заявляемых технических решений является сокращение времени работы РЛС в активном режиме за счет увеличении времени ее работы в пассивном режиме.

Поставленная задача решается тем, что в способе контроля воздушного пространства, облучаемого внешними источниками излучения, заключающемся в обзоре пространства радиолокационной станцией (РЛС), в дополнительном приеме отраженной объектом энергии внешнего радиоэлектронного средства (РЭС), в определении границ зоны, в пределах которых отношение отраженной объектом энергии РЭС к шуму больше порогового значения, и в излучении сигналов РЛС только в те направления зоны, в которых обнаружена отраженная энергия РЭС, согласно изобретению осуществляют прием энергии того внешнего РЭС, время ожидания облучения которым осматриваемого направления наименьшее и не превышает допустимого значения.

Поставленная задача решается также тем, что:

В качестве внешних РЭС выбирают наземные РЛС, в том числе РЛС сопредельных государств, определяют их параметры и координаты;

Для просмотра участка зоны выбирают те внешние РЛС, для которых при прочих равных условиях соотношение наибольшее, где Д MAKCi - максимальная дальность действия i-й внешней РЛС, Д ФАКТi - расстояние от i-й внешней РЛС до просматриваемого участка зоны;

Для просмотра участка зоны выбирают те внешние РЛС, для которых при прочих равных условиях углы дифракции наименьшие;

Для просмотра участка зоны выбирают внешние РЛС с широкой ДНА в угломестной плоскости;

На основе запомненных угловых координат β i , ε i , и дальности Д ФАКТi для i=1,...,n внешних РЛС вычисляют значения и углы дифракции и составляют карту соответствия участков контролируемой зоны параметрам внешних радиолокационных станций, подлежащим использованию при контроле этих участков.

Поставленная задача решается также тем, что в радиолокационной станции, содержащей пассивный канал, включающий последовательно соединенную приемную антенну и приемник, и активный канал, включающий последовательно соединенные антенну, антенный переключатель, приемник и устройство вычисления дальности, а также синхронизатор и передатчик, выход которого соединен со входом антенного переключателя, причем первый и второй выходы синхронизатора соединены соответственно со входом передатчика и вторым входом устройства вычисления дальности, согласно изобретению введены второй вход приемника, вход синхронизатора и блок управления каналами, содержащий ЗУ, и соединенный с его выходом вычислитель, выход которого соединен со вторым входом приемника, а второй его вход соединен с третьим выходом синхронизатора, а также второй вычислитель, вход и выход которого соединены соответственно с выходом приемника и входом синхронизатора.

Сущность заявляемых технических решений состоит в следующем.

Для решения поставленной задачи требуется информация о параметрах внешних РЭС, облучающих зону обзора РЛС, которая поступает от средств электронной разведки, запоминается и регулярно обновляется, т.е. составляется и ведется карта РЭС. Такая информация содержит данные о местоположении РЭС, временных интервалах работы РЭС на излучение, длинах волн излучаемых сигналов, мощности излучения и ее изменении в зависимости от углов, под которыми облучаются анализируемые участки зоны обзора.

Имеющаяся априорная информация о всех (n) РЭС, облучающих зону, перед осмотром в пассивном режиме каждого направления зоны обзора РЛС анализируется и производится выбор внешнего РЭС, наилучшим образом подходящего для использования на текущем шаге работы РЛС.

Выбирается внешнее РЭС (k-e из i=1,...,n), имеющее:

Наименьшее время ожидания облучения анализируемого участка зоны, не превышающее допустимое t ДОП, которое определяется исходя из допустимого времени увеличения периода обзора:

Наибольшую величину отношения максимальной дальности действия РЭС к расстоянию РЭС до просматриваемого участка зоны:

Наименьшие углы дифракции:

Наиболее широкий луч (Δθi) в угломестной плоскости:

При этом критерий (3) является важнейшим и поэтому - обязательным. Для его выполнения требуется максимально приблизить момент осмотра направления РЛС в пассивном режиме к моменту облучения этого направления внешним РЭС, т.е. уменьшить время ожидания облучения внешним РЭС осматриваемого РЛС направления. Чтобы уменьшить это время ожидания в наибольшей степени в заявляемом изобретении используется фазированная антенная решетка (ФАР). ФАР дает возможность изменять положение луча в секторе электронного сканирования в произвольном порядке. Эта способность ФАР позволяет в каждый момент времени из множества направлений в секторе электронного сканирования выбирать для осмотра в пассивном режиме то направление, время ожидания облучения которого каким-либо внешним РЭС наименьшее. Применение произвольного порядка выбора направления для осмотра в пассивном режиме вместо последовательного перехода от направления к направлению позволяет значительно уменьшить время ожидания облучения направления. Очевидно, что наилучший эффект при этом достигается при использовании двухмерной ФАР.

Приемная позиция, представляющая собой пассивную РЛС с ФАР, имеет перестраиваемую по частоте аппаратуру приема и обработки сигналов внешних РЭС, в частности внешних активных РЛС, в том числе расположенных на территории сопредельных государств. По результатам выбора внешнего РЭС производится настройка аппаратуры приемного канала.

После выбора РЭС осуществляется прием сигнала пассивным каналом. Если при этом в течение допустимого времени ожидания обнаружен отраженный сигнал внешнего РЭС, т.е. выполняются условия:

то это означает, что в данном направлении присутствует объект. Для обнаружения объекта и измерения его координат в это направление активным каналом излучается сигнал.

Если же в течение допустимого времени ожидания пассивным каналом уровень принимаемого излучения РЭС не превысил порогового значения, т.е. (7) не выполняется, то это означает, что в этом направлении объект отсутствует. Зондирующий сигнал в этом направлении не излучается. Луч антенны пассивного канала перемещается в следующее, не осмотренное ранее, направление контролируемой зоны, и процесс повторяется.

Для случая использования в качестве внешних РЭС активных РЛС, в том числе расположенных на территории сопредельных государств, критерием выбора внешней РЛС является суммарный угловой размер главного луча и боковых лепестков, при котором уровень принимаемого излучения имеет отношение сигнал/шум Q не менее порогового Q ПОР. К таким РЛС относятся, прежде всего, РЛС, удаленность которых от просматриваемого участка зоны (Д ФАКТ) существенно меньше, чем максимальная дальность РЛС (Д МАКС).

Так, например, если отношение , то уровень энергии внешней РЛС, падающей на осматриваемый участок зоны, будет достаточным для обнаружения объекта не только в области главного лепестка, но и боковых (уровень которых в данном случае составляет -13 дБ при равномерном амплитудном распределении поля по полотну антенны), а при дальнейшем возрастании указанного отношения - и в области фона, т.е. при этом и t i →0.

Указанный критерий будет удовлетворятся и для применяемых в качестве внешних аэродромных и трассовых РЛС, плотность расположения которых, как правило, достаточно высока и поэтому велика вероятность выполнения условия . К тому же современные аэродромные РЛС имеют широкие диаграммы направленности в угломестной плоскости, что обеспечивает облучение ими одновременно большого участка зоны.

Благоприятные условия для внешних РЛС достигаются и тогда, когда внешняя РЛС облучает анализируемый участок зоны с малыми углами дифракции. Так при величине углов дифракции не более ±10° ЭПР объекта возрастает в десятки и сотни раз (Бляхман А.Б., Рунова И.А. Бистатическая эффективная площадь рассеяния и обнаружения объектов при радиолокации на просвет. "Радиотехника и электроника", 2001, том 46, №4, с.424-432), что приводит к уменьшению времени ожидания облучения t i , поскольку обнаружение объекта становится возможным при облучении его боковыми лепестками и фоном ДНА РЛС.

Выбор внешней РЛС производится на основе априорных, регулярно обновляемых данных о параметрах и местоположении РЛС. Эти данные позволяют составить цифровую карту соответствия участков контролируемого пространства радиолокационным станциям, подлежащим использованию в качестве внешних при контроле этих участков. Указанная карта дает возможность обеспечить автоматическую перестройку параметров приемного канала для обзора участков зоны в пассивном режиме.

Таким образом, достигается уменьшение времени ожидания облучения внешним РЭС осматриваемого направления в зоне обзора и обеспечивается решение поставленной задачи - увеличение времени работы РЛС в пассивном режиме.

Изобретения иллюстрируются следующими чертежами.

Фиг.1 - блок-схема наиболее близкой РЛС;

Фиг.2 - блок-схема заявляемой РЛС.

Заявляемая радиолокационная станция (фиг.2) содержит пассивный канал 1, активный канал 2 и блок управления каналами 3, при этом пассивный канал 1 включает последовательно соединенную приемную антенну 4 и приемник 5, активный канал 2 включает последовательно соединенные антенну 6, антенный переключатель 7, приемник 8 и устройство вычисления дальности 9, а также синхронизатор 10 и передатчик 11, выход которого соединен со входом антенного переключателя 7, причем первый и второй выходы синхронизатора 10 соединены соответственно со входом передатчика 11 и вторым входом устройства вычисления дальности 9, блок управления каналами 3 включает ЗУ 12 и соединенный с его выходом вычислитель 13, выход которого соединен со вторым входом приемника 5, а второй его вход соединен с третьим выходом синхронизатора 10, а также вычислитель 14, вход и выход которого соединены соответственно с выходом приемника 5 и входом синхронизатора 10.

Заявляемая радиолокационная станция может быть выполнена с использованием следующих функциональных элементов.

Приемная антенна 4 и антенна 6 - ФАР с электронным сканированием по азимуту и углу места и с круговым механическим вращением по азимуту (Справочник по радиолокации, под ред. М.Сколника, т.2, М., "Сов. радио", 1977, стр.132-138).

Приемники 5 и 8 - супергетеродинного типа (Справочник по основам радиолокационной техники. М., 1967, стр.343-344).

Антенный переключатель 7 - балансный антенный переключатель на базе циркулятора (А.М.Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В. Дружинина. Военное издательство, 1967, стр.166-168).

Устройство вычисления дальности 9 - цифровой вычислитель, реализующий вычисление дальности до объекта по величине запаздывания отраженного сигнала (Теоретические основы радиолокации. /Под ред. Я.Д.Ширмана, М., "Сов. радио", 1970, стр.221).

Синхронизатор 10 - Радиолокационные устройства (теория и принципы построения). Под ред. В.В.Григорина-Рябова, стр.602-603.

Передатчик 11 - многокаскадный импульсный передатчик на клистроне (А.М.Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В.Дружинина. Военное издательство, 1967, стр.277-278).

ЗУ 12 - запоминающее устройство (Интегральные микросхемы. Справочник под ред. Т.В.Тарабрина, - М.: "Радио и связь", 1984).

Вычислитель 13 - цифровой вычислитель, реализующий выбор РЭС в соответствии с критериями (3)-(6).

Вычислитель 14 - цифровой вычислитель, реализующий управление активным каналом в соответствии с критериями (7).

Заявляемая РЛС работает следующим образом.

Данные о местоположении РЭС, временных интервалах работы РЭС на излучение, длинах волн излучаемых РЭС сигналов, мощности излучения и ее изменении в зависимости от углов, под которыми облучаются участки зоны обзора, поступают от средств электронной разведки и записывается в ЗУ 12, где хранятся и регулярно обновляются.

В процессе работы РЛС осуществляется анализ направлений зоны обзора с целью определения необходимости излучения зондирующего сигнала активного канала для измерения координат объекта. Для каждого направления зоны обзора определяется РЭС, наилучшим образом подходящее для использования. Выбор РЭС осуществляется в вычислителе 13 путем проверки критериев (3)-(6) для всех внешних РЭС, параметры которых записаны в ЗУ 12.

После того, как РЭС выбрано, производится настройка приемника 5 для приема сигналов этого РЭС. Для этого с выхода вычислителя 13 в приемник 5 подаются параметры сигналов выбранного РЭС. После чего с помощью приемной антенны 4 и приемника 5 принимается сигнал выбранного РЭС.

Если при приеме в анализируемом направлении обнаружен отраженный сигнал внешнего РЭС, удовлетворяющий условиям (7), то для обнаружения объекта и измерения его координат с выхода вычислителя 14 на вход синхронизатора 10 подается управляющий сигнал, по которому передатчиком 11 формируется высокочастотный зондирующий сигнал. С выхода передатчика 11 высокочастотный сигнал посредством антенного переключателя подается в антенну 6 и излучается. Отраженный от объекта сигнал принимается антенной 6 и посредством антенного переключателя 7 подается в приемник 8, где преобразуется на промежуточную частоту, фильтруется, усиливается и подается в устройство вычисления дальности 9. В устройстве вычисления дальности 9 по величине времени запаздывания отраженного сигнала вычисляется дальность до объекта R 0 . Азимут и угол места объекта (ε 0 и β 0 соответственно) определяются по положению луча антенны 6.

Если в течение допустимого времени ожидания пассивным каналом 1 уровень принимаемого излучения РЭС не превысил порогового значения, т.е. условия (7) не выполнились, то сигнал активного канала 2 в этом направлении не излучается. Луч приемной антенны 4 пассивного канала 1 перемещается в следующее, не осмотренное ранее, направление контролируемой зоны, и процесс повторяется.

1. Способ контроля воздушного пространства, облучаемого внешними источниками излучения, заключающийся в обзоре пространства радиолокационной станцией (РЛС) в пассивном режиме, в приеме отраженной объектом энергии внешнего радиоэлектронного средства (РЭС), в определении границ зоны, в пределах которых отношение отраженной объектом энергии РЭС к шуму больше порогового значения, и в излучении сигналов РЛС в активном режиме только в те направления зоны, в которых обнаружена отраженная энергия РЭС, отличающийся тем, что осуществляют прием энергии того внешнего РЭС, время ожидания облучения которым осматриваемого направления наименьшее и не превышает допустимого, определяемого, исходя из допустимого времени увеличения периода обзора РЛС, при этом используемая информация о временных интервалах работы РЭС на излучение от средств электронной разведки запоминается и регулярно обновляется для каждого направления зоны обзора РЛС.

2. Способ по п.1, отличающийся тем, что в качестве внешних РЭС выбирают наземные РЛС, в том числе РЛС сопредельных государств, при этом их параметры определяют на основании априорной информации от средств электронной разведки.

3. Способ по п.2, отличающийся тем, что для просмотра участка зоны выбирают те внешние РЛС, для которых при прочих равных условиях соотношение наибольшее, где Д максi - максимальная дальность действия i-й внешней РЛС, Д фактi - расстояние от i-й внешней РЛС до просматриваемого участка зоны.

4. Способ по п.2, отличающийся тем, что для просмотра участка зоны выбирают те внешние РЛС, для которых при прочих равных условиях углы дифракции наименьшие.

5. Способ по п.2, отличающийся тем, что для просмотра участка зоны выбирают внешние РЛС с широкой ДНА в угломестной плоскости.

6. Способ по п.2, или 3, или 4, или 5, отличающийся тем, что на основании запоминаемой и обновляемой информации от средств электронной разведки о местоположении РЭС, временных интервалах работы РЭС на излучение, длинах волн излучаемых сигналов, мощности излучения и ее изменения в зависимости от углов, под которыми облучаются анализируемые участки зоны обзора, составляют карту соответствия участков контролируемой зоны параметрам внешних радиолокационных станций, подлежащим использованию при контроле этих участков.

7. Радиолокационная станция, содержащая пассивный канал, включающий последовательно соединенную приемную антенну и приемник, и активный канал, включающий последовательно соединенные антенну, антенный переключатель, приемник и устройство вычисления дальности, а также синхронизатор и передатчик, выход которого соединен со входом антенного переключателя, причем первый и второй выходы синхронизатора соединены соответственно со входом передатчика и вторым входом устройства вычисления дальности, отличающаяся тем, что в пассивный канал введены блок управления каналами, содержащий ЗУ и соединенный с его выходом вычислитель, реализующий выбор радиолокационного средства (РЭС), а также введен вычислитель, реализующий управление активным каналом, при этом выход вычислителя, реализующего выбор РЭС, соединен со вторым входом приемника пассивного канала, а второй вход вычислителя, реализующего выбор РЭС, соединен с третьим выходом синхронизатора активного канала, вход вычислителя, реализующего управление активным каналом, соединен с выходом приемника пассивного канала, а выход соединен с входом синхронизатора активного канала.

Изобретение относится к геодезическим измерениям с использованием спутниковых радионавигационных систем, преимущественно при работе в условиях сильного влияния отраженных сигналов, в частности при работах в залесенной местности, а также в городских стесненных условиях

Способ контроля воздушного пространства, облучаемого внешними источниками излучения, и радиолокационная станция для его реализации