Термины

Межзвездные перелеты — не фантастика. Межзвездные полеты Полеты к звездам

В одной только нашей Галактике расстояния между звездными системами невообразимо огромны. Если пришельцы из космоса действительно посещают Землю, уровень их технического развития должен во сто крат превосходить теперешний уровень нашего, земного.

На расстоянии в несколько световых лет

Для обозначения расстояний между звездами астрономы ввели понятие «световой год». Скорость света - самая быстрая во Вселенной: 300 ООО км/с!

Ширина нашей Галактики - 100 ООО световых лет. Чтобы покрыть такое громадное расстояние, пришельцам с других планет надо построить космический корабль, скорость которого равна или даже превышает скорость света.

Ученые полагают, что материальный объект не может двигаться быстрее скорости света. Впрочем, раньше они считали, что невозможно развить и сверхзвуковую скорость, однако в 1947 г. самолет модели «Белл Х-1» успешно преодолел звуковой барьер.

Возможно в будущем, когда у человечества накопится больше знаний о физических законах Вселенной, земляне сумеют построить космический корабль, который будет передвигаться со скоростью света и даже быстрее.

Великие путешествия

Даже если инопланетяне способны передвигаться в космическом пространстве со скоростью света, подобное путешествие должно занять многие годы. Для землян, продолжительность жизни которых составляет в среднем 80 лет, это было бы невозможно. Однако у каждого вида живых существ свой собственный жизненный цикл. Например, в Калифорнии, США, есть остистые сосны, которым уже 5000 лет.

Кто знает, сколько лет живут пришельцы? Может быть, несколько тысяч? Тогда межзвездные перелеты, длящиеся сотни лет, для них обычны.

Кратчайшие пути

Вполне вероятно, что инопланетяне нашли короткие пути через космическое пространство - гравитационные «дыры», или искажения пространства, образованные силой тяжести. Такие места во Вселенной могли бы стать своего рода мостами - кратчайшими путями между небесными телами, находящимися в разных концах Вселенной.

Рубрики

    • . Другими словами, гороскоп – это астрологическая карта, составленная с учетом места и времени, учитывающая расположение планет относительно линии горизонта. Для построения индивидуального натального гороскопа необходимо с максимальной точностью знать время и место рождения человека. Это требуется для того, чтобы узнать, как располагались небесные тела в данное время и в данном месте. Эклиптика в гороскопе изображена в виде окружности, разделенной на 12 секторов (знаки зодиака . Обратившись к натальной астрологии, вы сможете лучше понять себя и других. Гороскоп – это инструмент самопознании. С его помощью можно не только исследовать собственный потенциал, но и разобраться в отношениях с окружающими и даже принять некоторые важные решения.">Гороскоп127
  • . С их помощью узнают ответы на конкретные вопросы и предсказывают будущее.Узнать грядущее можно по домино, это один из очень редких типов гадания. Гадают и на чайной и кофейной гуще, по ладони, и по китайской Книге Перемен. Каждый из этих способов направлен на предсказание будущего.Если вы желаете знать, что ожидает вас в ближайшее время, выберите то гадание, которое вам больше всего по душе. Но помните: какие бы события ни были вам предсказаны, принимайте их не как непреложную истину, а как предупреждение. Используя гадания, вы предугадаете свою судьбу, но, приложив определенные усилия, сможете её изменить.">Гадания65

В процессе верстки исправлены регистры чисел и опечатки в формулах. Приведены в читаемый вид таблицы.
Иван Александрович Корзников
Реальности межзвездных полетов

Люди уже давно мечтают о полетах через космическое пространство к другим звездам, о путешествиях по другим мирам и встречах с неземным разумом. Фантасты исписали горы бумаги, пытаясь представить, как это будет происходить, они выдумали разнообразную технику, способную осуществить эти мечты. Но пока это только фантазии. Попробуем представить, как такой полет может выглядеть в реальности.
Расстояния между звездами так велики, что свет от одной звезды до другой распространяется годами, а он движется с очень большой скоростью с =299 793 458 м/с. Для измерения этих расстояний астрономы используют специальную единицу - световой год, она равна расстоянию которое проходит свет за 1 год: 1 св. год = 9.46·10 15 метров (это примерно в 600 раз больше размеров солнечной системы). Астрономы подсчитали, что в сфере радиусом 21.2 световых лет вкруг Солнца имеется 100 звёзд, входящих в 72 звездные системы (двойные, тройные и т.д. системы близких звезд). Отсюда легко найти, что на одну звездную систему в среднем приходится объем пространства 539 кубических световых лет, а среднее расстояние между звездными системами составляет примерно 8.13 световых лет. Реальное расстояние может быть и меньше - так, до ближайшей к Солнцу звезды Проксима Центавра 4.35 св. л, но в любом случае межзвездный перелет представляет собой преодоление расстояния по крайней мере в несколько световых лет. А это значит, что скорость звездолета должна быть не меньше, чем 0.1 с - тогда перелет займет несколько десятков лет и может быть осуществлен одним поколением астронавтов.
Таким образом, скорость звездолета должна быть больше 30 000 км/с. Для земной техники это пока недостижимая величина - мы едва освоили скорости в тысячу раз меньше. Но допустим, что все технические проблемы решены, и наш звездолет имеет двигатель (фотонный или какой угодно другой), способный разогнать космический корабль до таких скоростей. Нас не интересуют детали его устройства и функционирования, для нас здесь важно только одно обстоятельство: современная наука знает только один способ разгона в космическом пространстве - реактивное движение, которое основано на выполнении закона сохранения импульса системы тел. И важно здесь то, что при таком движении звездолет (и любое другое тело) именно перемещается в пространстве, физически взаимодействуя со всем, что в нем находится.
Фантасты в своих фантазиях придумали разнообразные "гиперпространственные скачки" и "субпространственные переходы" от одной точки пространства до другой, минуя промежуточные области пространства, но все это, по представлениям современной науки, не имеет никаких шансов на осуществление в реальности. Современная наука твердо установила, что в природе выполняются определенные законы сохранения: закон сохранения импульса, энергии, заряда и т. д. А при "гиперпространственном скачке" получается, что в некоторой области пространства энергия, импульс и заряды физического тела просто исчезают, то есть эти законы не выполняются. С точки зрения современной науки это значит, что такой процесс не может быть осуществлен. Да и главное - непонятно, что это вообще такое, это "гиперпространство" или "субпространство", попав в которое, физическое тело перестает взаимодействовать с телами в реальном пространстве. В реальном мире существует лишь то, что себя проявляет во взаимодействии с другими телами (собственно, пространство и есть отношение существующих тел), и это значит, что такое тело фактически перестанет существовать - со всеми вытекающими последствиями. Так что все это - бесплодные фантазии, которые не могут быть предметом серьезного обсуждения.
Итак, допустим, что имеющийся реактивный двигатель разогнал звездолет до необходимой нам субсветовой скорости, и он с этой скоростью перемещается в космическом пространстве от одной звезды к другой. Некоторые аспекты такого полета уже давно обсуждаются учеными (, ), но они рассматривают в основном различные релятивистские эффекты такого движения, не обращая внимания на другие существенные аспекты межзвездного полета. А реальность такова, что космическое пространство - не абсолютная пустота, оно представляет собой физическую среду, которую принято называть межзвездной средой. В ней есть атомы, молекулы, пылинки и другие физические тела. И со всеми этими телами звездолету придется физически взаимодействовать, что при движении с такими скоростями превращается в проблему. Рассмотрим эту проблему подробнее.
Астрономы, наблюдая радиоизлучение из космической среды и прохождение через нее света нашли, что в космическом пространстве имеются атомы и молекулы газов: в основном это атомы водорода Н , молекулы водорода Н 2 (их по количеству примерно столько же, как и атомов Н ), атомы гелия Не (их в 6 раз меньше, чем атомов Н ), и атомы других элементов (больше всего углерода С, кислорода О и азота N ), которые в сумме составляют около 1 % всех атомов. Обнаружены даже такие сложные молекулы, как СО 2 , СН 4 , НСN , Н 2 О, NH 3 , НСООН и другие, но в мизерных количествах (их в миллиарды раз меньше, чем атомов Н ). Концентрация межзвездного газа очень мала и составляет (вдали от газопылевых облаков) в среднем 0,5-0,7 атомов на 1 см 3 .
Понятно, что при движении звездолета в такой среде этот межзвездный газ будет оказывать сопротивление, тормозя звездолет и разрушая его оболочки. Поэтому было предложено обратить вред в пользу и создать прямоточный реактивный двигатель, который, собирая межзвездный газ (а он на 94 % состоит из водорода) и аннигилируя его с запасами антивещества на борту, получал бы таким образом энергию для движения звездолета. По проекту авторов впереди звездолета должен находиться ионизирующий источник (создающий электронный или фотонный луч, ионизирующий налетающие атомы) и магнитная катушка, фокусирующая получившиеся протоны к оси звездолета, где они используются для создания фотонной реактивной струи.
К сожалению, при детальном рассмотрении оказывается, что этот проект неосуществим. Прежде всего, ионизирующий луч не может быть электронным (как настаивают авторы) по той простой причине, что звездолет, испускающий электроны, сам будет заряжаться положительным зарядом, и рано или поздно поля, создаваемые этим зарядом, нарушат работу систем звездолета. Если же использовать фотонный луч, то тогда (впрочем, как и для электронного луча) дело упирается в маленькое сечение фотоионизации атомов. Проблема в том, что вероятность ионизации атома фотоном очень мала (поэтому воздух не ионизируется мощными лучами лазеров). Количественно она выражается сечением ионизации, которое численно равно отношению числа ионизированных атомов к плотности потока фотонов (числу налетевших фотонов на 1 см 2 за секунду). Фотоионизация атомов водорода начинается при энергии фотонов 13.6 электронвольт=2.18·10 -18 Дж (длина волны 91.2 нм), и при этой энергии сечение фотоионизации максимально и равно 6.3·10 -18 см 2 (,стр.410). Это значит, что для ионизации одного атома водорода требуется в среднем 1.6·10 17 фотонов на см 2 за секунду. Поэтому мощность такого ионизирующего луча должна быть гигантской: если звездолет движется со скоростью v то за 1 секунду на 1 см 2 его поверхности налетает rv встречных атомов, где r - концентрация атомов, что в нашем случае околосветового движения составит величину порядка rv =0.7·3·10 10 =2·10 10 атомов в секунду на 1 см 2 . Значит, поток ионизирующих фотонов должен быть не меньше n= 2·10 10 / 6.3·10 -18 =3·10 27 1/см 2 ·с. Энергия, которую несет такой поток фотонов будет равна е =2.18·10 -18 ·3·10 27 =6,5·10 9 Дж/см 2 ·с.
К тому же, кроме атомов водорода, на звездолет будет налетать столько же молекул Н 2 , а их ионизация происходит при энергии фотонов 15.4 эв (длина волны 80.4 нм). Это потребует увеличения мощности потока примерно в два раза, и полная мощность потока должна быть е =1.3·10 10 Дж/см 2 . Для сравнения можно указать, что поток энергии фотонов на поверхности Солнца равен 6.2·10 3 Дж/см 2 ·с, то есть звездолет должен светить в два миллиона раз ярче Солнца.
Поскольку энергия и импульс фотона связаны соотношением Е=рс , то этот поток фотонов будет иметь импульс р=еS/с где S - площадь массозаборника (порядка 1000 м 2), что составит 1.3·10 10 ·10 7 / 3·10 8 =4.3·10 8 Кг·м/с, и этот импульс направлен против скорости и тормозит звездолет. Фактически получается, что впереди звездолета стоит фотонный двигатель и толкает его в обратном направлении - ясно, что такой тяни-толкай далеко не улетит.
Таким образом, ионизация налетающих частиц слишком накладна, а другого способа концентрации межзвездных газов современная наука не знает. Но даже если такой способ будет найден, то прямоточный двигатель все равно себя не оправдает: еще Зенгер показал (,стр.112), что величина тяги прямоточного фотонно-реактивного двигателя ничтожна и он не может быть использован для разгона ракеты с высоким ускорением. Действительно, полный приток массы набегающих частиц (в основном атомов и молекул водорода) составит dm=3m p Srv =3·1.67·10 -27 ·10 7 · 2·10 10 =10 -9 Кг/с. При аннигиляции эта масса будет выделять максимум W=mc 2 = 9·10 7 Дж/с, и если вся эта энергия уйдет на формирование фотонной реактивной струи, то прирост импульса звездолета за секунду будет составлять dр=W/c =9·10 7 /3·10 8 =0.3 Кг·м/с, что соответствует тяге в 0.3 ньютона. Примерно с такой силой давит на землю маленькая мышка, и получается, что гора родила мышь. Поэтому конструирование прямоточных двигателей для межзвездных полетов не имеет смысла.

Из сказанного следует, что отклонить налетающие частицы межзвездной среды не получится, и звездолету придется принимать их своим корпусом. Это приводит к некоторым требованиям к конструкции звездолета: впереди него должен находиться экран (например, в виде конической крышки), который будет защищать основной корпус от воздействия космических частиц и излучений. А за экраном должен находиться радиатор, отводящий тепло от экрана (и одновременно служащий вторичным экраном), прикрепленный к основному корпусу звездолета термоизолирующими балками. Необходимость такой конструкции объясняется тем, что налетающие атомы имеют большую кинетическую энергию, они будут глубоко внедряться в экран и, тормозясь в нем, рассеивать эту энергию в виде теплоты. Например, при скорости полета 0,75 с энергия протона водорода будет примерно 500 Мэв - в единицах ядерной физики, что соответствует 8·10 -11 Дж. Он будет внедряться в экран на глубину нескольких миллиметров и передаст эту энергию колебаниям атомов экрана. А таких частиц будет налетать около 2·10 10 атомов и столько же молекул водорода в секунду на 1 см 2 ,то есть каждую секунду на 1 см 2 поверхности экрана будет поступать 4.8 Дж энергии, переходящей в теплоту. А проблема в том, что в космосе отводить эту теплоту можно только путем излучения электромагнитных волн в окружающее пространство (воздуха и воды там нет). Это значит, что экран будет нагреваться до тех пор, пока его тепловое электромагнитное излучение не сравняется с поступающей от налетающих частиц мощностью. Тепловое излучение телом электромагнитной энергии определяется законом Стефана-Больцмана, согласно которому энергия, излучаемая за секунду с 1 см 2 поверхности равна q=sТ 4 где s =5.67·10 -12 Дж/см 2 К 4 -постоянная Стефана, а Т - температура поверхности тела. Условием установления равновесия будет sТ 4 =Q где Q - поступающая мощность, то есть температура экрана будет Т=(Q/s) 1/4 . Подставляя в эту формулу соответствующие значения, найдем, что экран будет нагреваться до температуры 959 о К = 686 о С. Понятно, что при больших скоростях эта температура будет еще выше. Это значит, например, что экран нельзя делать из алюминия (его температура плавления всего 660 о С), и его нужно термоизолировать от основного корпуса звездолета - иначе будут недопустимо греться жилые отсеки. А для облегчения теплового режима экрана к нему необходимо присоединить радиатор с большой поверхностью излучения (можно из алюминия), например в виде клеточной системы продольных и поперечных ребер, при этом поперечные ребра будут одновременно выполнять функцию вторичных экранов, защищая жилые отсеки от осколков и тормозного излучения попадающих в экран частиц и т.п.

Но защита от атомов и молекул - не главная проблема межзвездного полета. Астрономы, наблюдая поглощение света от звезд, установили, что в межзвездном пространстве имеется значительное количество пыли. Такие частицы, сильно рассеивающие и поглощающие свет, имеют размеры 0.1-1 микрон и массу порядка 10 -13 г, а их концентрация много меньше концентрации атомов и равна примерно r =10 -12 1/см 3 Судя по их плотности (1 г/см 3) и показателю преломления (n =1.3 ) они представляют собой в основном снежные комочки, состоящие из смерзшихся космических газов (водорода, воды, метана, аммиака) с примесью твердых углеродных и металлических частичек. Видимо, именно из них образуются ядра комет, имеющие такой же состав. И хотя это должны быть довольно рыхлые образования, при околосветовых скоростях они могут нанести большой вред.
При таких скоростях начинают сильно проявляться релятивистские эффекты, и кинетическая энергия тела в релятивистской области определяется выражением

Как видно, энергия тела резко растет с приближением v к скорости света c: Так, при скорости 0.7 с пылинка с m=10 -13 г имеет кинетическую энергию 3.59 Дж (см. Таблицу 1) и попадание ее в экран эквивалентно взрыву в нем примерно 1 мг тротила. При скорости 0.99 с эта пылинка будет иметь энергию 54.7 Дж, что сравнимо с энергией пули, выпущенной из пистолета Макарова (80 Дж). При таких скоростях получится, что каждый квадратный сантиметр поверхности экрана непрерывно обстреливается пулями (причем разрывными) с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета.

Таблица 1 Энергетические соотношения

0.1 4.73 4.53·10 14 1,09·10 5 0.2 19.35 1.85·10 15 4,45·10 5 0.3 45.31 4.34·10 15 1,04·10 6 0.4 85.47 8.19·10 15 1,97·10 6 0.5 145.2 1.39·10 16 3,34·10 6 0.6 234.6 2.25·10 16 5,40·10 6 0.7 375.6 3.59·10 16 8,65·10 6 0.8 625.6 5.99·10 16 1,44·10 7 0.9 1214 1.16·10 17 2,79·10 7 0.99 5713 5.47·10 17 1,31·10 8 0.999 20049 1.92·10 18 4,62·10 8
v/c 1/(1-v 2 /c 2) 1/2 E p K T
1.005
1.020
1.048
1.091
1.155
1.25
1.40
1.667
2.294
7.089
22.37

Обозначения: Е р - кинетическая энергия протона в Мэв К - кинетическая энергия 1 Кг вещества в Дж Т - тротиловый эквивалент килограмма в тоннах тротила.

Для оценки последствий удара частицы в поверхность можно использовать формулу, предложенную специалистом по этим вопросам Ф.Уипплом (,стр.134), согласно которой размеры образовавшегося кратера равны

где d - плотность вещества экрана, Q - его удельная теплота плавления.

Но здесь то нужно иметь в виду, что на самом деле мы не знаем, как пылинки будут воздействовать на материал экрана при таких скоростях. Эта формула справедлива для небольших скоростей удара (порядка 50 км/с и менее), а при оклосветовых скоростях воздействия физические процессы удара и взрыва должны протекать совсем иначе и гораздо интенсивнее. Можно только предполагать, что в силу релятивистских эффектов и большой инерции материала пылинки взрыв будет направлен вглубь экрана, по типу кумулятивного взрыва, и приведет к образованию гораздо более глубокого кратера. Приведенная формула отражает общие энергетические соотношения, и мы допустим, что она годится для оценки результатов удара и для околосветовых скоростей.
По видимому, лучшим материалом для экрана является титан (в силу его небольшой плотности и физических характеристик), для него d =4.5 г/см 3 , а Q =315 КДж/Кг, что дает

d =0.00126·Е 1/3 метров

При v =0.1 c получим Е =0.045 Дж и d =0,00126·0.356=0.000448 м=0.45 мм. Легко найти, что пройдя путь в 1 световой год, экран звездолета встретит n=rs =10 -12 ·9.46·10 17 =10 6 пылинок на каждый см 2 ,и каждые 500 пылинок сроют слой 0.448 мм экрана. Значит, после 1 светового года пути экран будет стерт на толщину 90 см. Отсюда следует, что для полета на таких скоростях скажем, к Проксиме Центавра (только туда) экран должен иметь толщину примерно 5 метров и массу около 2.25 тысячи тонн. При больших скоростях дело будет обстоять еще хуже:

Таблица 2 Толщина Х титана, стираемого за 1 световой год пути

0.1 0.448 0.9 0.2 0.718 3.66 0.3 0.955 9.01 0.4 1.178 16.4 0.5 1.41 27.6
v/c E d мм X м
0.045
0.185
0.434
0.818
1.39
. . .

Как видно, при v/c >0.1 экран должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн). Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны.

Рассмотренное абразивное действие космической пыли на самом деле не исчерпывает всего спектра воздействий, которым подвергнется звездолет во время межзвездного полета. Очевидно, что в межзвездном пространстве есть не только пылинки, но и тела других размеров и масс, однако астрономы не могут непосредственно наблюдать их из-за того, что хотя их размеры больше, но самих их меньше, так что они не дают ощутимого вклада в поглощение света звезд (рассмотренные ранее пылинки имеют размер порядка длины волны видимого света и поэтому сильно его поглощают и рассеивают, и их достаточно много, поэтому астрономы в основном их и наблюдают).
Но о телах в далеком космосе можно получить представление по тем телам, которые мы наблюдаем в солнечной системе, в том числе вблизи Земли. Ведь, как показывают измерения, солнечная система движется относительно соседних звезд примерно в направлении Веги со скоростью 15.5 км/с, а значит, она каждую секунду заметает все новые и новые объемы космического пространства вместе с его содержимым. Конечно, не все вблизи Солнца пришло извне, многие тела изначально являются элементами солнечной системы (планеты, астероиды, многие метеорные потоки). Но астрономы не раз наблюдали например, полет некоторых комет, которые прилетели из межзвездного пространства и туда же улетели. Значит, там имеются и очень крупные тела (массой в миллионы и миллиарды тонн), но они встречаются очень редко. Понятно, что там могут встретиться тела практически любых масс, но с разной вероятностью. И чтобы оценить вероятность встречи с различными телами в межзвездном пространстве нам нужно найти распределение таких тел по массам.
Прежде всего нужно знать, что происходит с телами когда они находятся в солнечной системе. Это вопрос хорошо изучен астрофизиками , и они нашли, что время жизни не слишком крупных тел в солнечной системе очень ограничено. Так, мелкие частички и пылинки с массами менее 10 -12 г просто выталкиваются за пределы солнечной системы потоками света и протонов от Солнца (что видно по хвостам комет). Для более крупных частичек результат оказывается обратным: в результате так называемого эффекта Пойнтинга-Робертсона они падают на Солнце, постепенно опускаясь к нему по спирали за время порядка нескольких десятков тысяч лет.
Это значит, что наблюдаемые в солнечной системе спорадические частицы и микрометеориты (не относящиеся к ее собственным метеорным потокам) попали в нее из окружающего космоса, так как ее собственные частицы такого типа давно исчезли. Поэтому искомую зависимость можно найти по наблюдениям спорадических частиц в самой солнечной системе. Такие наблюдения давно ведутся, и исследователи пришли к выводу (,), что закон распределения космических тел по массам имеет вид N(M)=N 0 /M i Непосредственные измерения для спорадических метеоров в интервале масс от 10 -3 до 10 2 г (,стр.127) дают для плотности потока метеоров с массой более М грамм зависимость

Ф(М )=Ф(1)/M 1.1

Наиболее достоверные результаты по этому вопросу получены по измерениям микрократеров, образовавшихся на поверхностях космических аппаратов (,стр.195), они тоже дают k =1.1 в интервале масс от 10 -6 до 10 5 г. Для меньших масс остается предполагать, что это распределение выполняется и для них. Для величины потока частиц массивнее 1 г различные измерения дают значения 10 -15 1) 2·10 -14 1/м 2 с, и поскольку величина потока связана с пространственной плотностью тел соотношением Ф=rv , то отсюда можно найти, что концентрация в космосе тел с массой более М дается формулой

r(М )=r 1 /М 1.1

где параметр r 1 можно найти приняв среднюю скорость спорадических метеорных частиц равной v =15 км/с (как это видно из измерений П.Миллмана), тогда r 1 =Ф(1)/v получается равной в среднем 5·10 -25 1/см 3.
Из полученного распределения можно найти, что концентрация частиц, массы которых больше 0.1 г в среднем равна r (0.1)=r 1 · (10) · 1.1=6.29·10 -24 1/см 3 , а это значит, что на пути в 1 световой год звездолет встретит на 1 см 2 поверхности n=rs =5.9·10 -6 таких частиц, что при общей площади S =100 м 2 =10 6 см 2 составит не менее 5 частиц массивнее 0.1 г на все поперечное сечение звездолета. А каждая такая частица при v =0.1 c имеет энергию более 4.53·10 10 Дж, что эквивалентно кумулятивному взрыву 11 тонн тротила. Даже если экран такое выдержит, то дальше произойдет вот что: поскольку вряд ли частица ударит точно в центр экрана, то в момент взрыва появится сила, поворачивающая звездолет вокруг его центра масс. Она, во-первых, слегка изменит направление полета, а, во-вторых, повернет звездолет, подставив его бок встречному потоку частиц. И звездолет будет быстро искромсан ими, а если на его борту имеются запасы антивещества, то все завершится серией аннигиляционных взрывов (или одним большим взрывом).
Некоторые авторы высказывают надежду , что от опасного метеорита можно уклониться. Посмотрим, как это будет выглядеть на субсветовой скорости v =0.1 c. Метеорит весом 0.1 г имеет размер около 2 мм и энергию, эквивалентную 10.9 тонн тротила. Попадание его в звездолет приведет к фатальному взрыву, и придется от него уклоняться. Допустим, что радар звездолета способен обнаружить такой метеорит на расстоянии х =1000 км - хотя непонятно, как это будет осуществляться, так как с одной стороны, радар должен находиться перед экраном, чтобы выполнять свою функцию, а с другой стороны - за экраном, чтобы не быть уничтоженным потоком набегающих частиц.
Но допустим, тогда за время t = x/v = 0.03 секунды звездолет должен среагировать и отклониться на расстояние у = 5 м (считая диаметр звездолета 10 метров). Это значит, что он должен приобрести в поперечном направлении скорость u=y/t - опять же за время t , то есть его ускорение должно быть не меньше a=y/t 2 = 150 м/с 2 . Это ускорение в 15 раз больше нормального, и его не выдержит никто из экипажа, да и многие приборы звездолета. И если масса звездолета составляет около 50 000 тонн, то для этого потребуется сила F= am = 7.5·10 9 ньютон. Такую силу на время в тысячные доли секунды можно получить только произведя на звездолете мощный взрыв: при химическом взрыве получается давление порядка 10 5 атмосфер=10 10 Ньютон/м 2 и оно будет способно свернуть звездолет в сторону. То есть, чтобы уклониться от взрыва нужно звездолет взорвать...
Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями, порядка 0.01 с и менее. Это значит, что колонизация иных миров может происходить медленными темпами, так как каждый перелет будет занимать сотни и тысячи лет, и для этого нужно будет посылать к другим звездам большие колонии людей, способные существовать и развиваться самостоятельно. Для такой цели может подойти небольшой астероид из смерзшегося водорода: внутри него можно устроить город подходящих размеров, где будут жить астронавты, а сам материал астероида будет использоваться в качестве топлива для термоядерной энергетической установки и двигателя. Других путей освоения дальнего космоса современная наука предложить не может.
Во всем этом есть только один положительный аспект: вторжение полчищ агрессивных инопланетян Земле не грозит - это слишком сложное дело. Но обратная сторона медали заключается в том, что и добраться до миров, где есть "братья по разуму" не удастся в течении ближайших нескольких десятков тысяч лет. Поэтому наиболее быстрым способом обнаружения инопланетян является установление связей с помощью радиосигналов или каких-либо других сигналов.

Библиография

    1. Новиков И.Д. Теория относительности и межзвездные перелеты - М.:Знание,1960
    2. Перельман Р.Г. Цели и пути освоения космоса - М.:Наука,1967
    3. Перельман Р.Г. Двигатели галактических кораблей - М.: изд. АН СССР,1962
    4. Бурдаков В.П., Данилов Ю.И. Внешние ресурсы и космонавтика - М.:Атомиздат,1976
    5. Зенгер Е., К механике фотонных ракет - М.: изд. Иностранной литературы,1958
    6. Закиров У.Н. Механика релятивистских космических полетов - М.:Наука,1984
    7. Аллен К.У. Астрофизические величины - М.:Мир,1977
    8. Мартынов Д.Я. Курс общей астрофизики - М.:Наука,1971
    9. Физические величины (Справочник) - М.:Энергоатомиздат,1991
    10. Бурдаков В.П., Зигель Ф.Ю. Физические основы космонавтики (физика космоса) - М.:Атомиздат,1974
    11. Спитцер Л. Пространство между звездами - М.:Мир,1986.
    12. Лебединец В.М. Аэрозоль в верхней атмосфере и космическая пыль - Л.: Гидрометеоиздат,1981
    13. Бабаджанов П.Б. Метеоры и их наблюдение - М.:Наука,1987
    14. Акишин А.И.,Новиков Л.С. Воздействие окружающей среды на материалы космических аппаратов - М.:Знание,1983

__________________________________________________ [ оглавление ]

Оптимизирован под Internet Explorer 1024X768
средний размер шрифта
Дизайн A Semenov

Солнечная система уже давно не представляет особого интереса для фантастов. Но, что удивительно, и у некоторых ученых наши «родные» планеты не вызывают особого вдохновения, хотя они еще практически не исследованы.

Едва прорубив окно в космос, человечество рвется в неведомые дали, причем уже не только в мечтах, как раньше.
Еще Сергей Королев обещал в скором времени полеты в космос «по профсоюзной путевке», но этой фразе уже полвека, а космическая одиссея по-прежнему удел избранных - слишком дорогое удовольствие. Однако же два года назад HACA запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технического фундамента для космических полетов.


Эта беспрецедентная программа должна привлечь ученых, инженеров и энтузиастов со всего мира. Если все увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться, как на трамваях.

Так какие же проблемы нужно решить, чтобы звездные полеты стали реальностью?

ВРЕМЯ И СКОРОСТЬ ОТНОСИТЕЛЬНЫ

Звездоплавание автоматических аппаратов кажется некоторым ученым почти решенной задачей, как это ни странно. И это при том, что совершенно нет никакого смысла запускать автоматы к звездам с нынешними черепашьими скоростями (примерно 17 км/с) и прочим примитивным (для таких неведомых дорог) оснащением.

Сейчас за пределы Солнечной системы ушли американские космические аппараты «Пионер-10» и «Вояджер-1», связи с ними уже нет. «Пионер-10» движется в сторону звезды Альдебаран. Если с ним ничего не случится, он достигнет окрестностей этой звезды... через 2 миллиона лет. Точно так же ползут по просторам Вселенной и другие аппараты.

Итак, независимо от того, обитаем корабль или нет, для полета к звездам ему нужна высокая скорость, близкая к скорости света. Впрочем, это поможет решить проблему полета только к самым близким звездам.

«Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, - писал К. Феоктистов, - время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. Но на Земле-то за это время пройдет намного больше».

Согласно теории относительности, ход времени в двух движущихся одна относительно другой системах различен. Так как на больших расстояниях корабль успеет развить скорость очень близкую к скорости света, разница во времени на Земле и на корабле будет особенно велика.

Предполагается, что первой целью межзвездных полетов станет альфа Центавра (система из трех звезд) - наиболее близкая к нам. Со скоростью света туда можно долететь за 4,5 года, на Земле за это время пройдет лет десять. Но чем больше расстояние, тем сильней разница во времени.

Помните знаменитую «Туманность Андромеды» Ивана Ефремова? Там полет измеряется годами, причем земными. Красивая сказка, ничего не скажешь. Однако эта вожделенная туманность (точнее, галактика Андромеды) находится от нас на расстоянии 2,5 миллиона световых лет.



По некоторым расчетам, путешествие займет у космонавтов более 60 лет (по звездолетным часам), но на Земле-то пройдет целая эра. Как встретят космических «неадертальцев» их далекие потомки? Да и будет ли жива Земля вообще? То есть возвращение в принципе бессмысленно. Впрочем, как и сам полет: надо помнить, что мы видим галактику туманность Андромеды такой, какой она была 2,5 млн лет назад - столько идет до нас ее свет. Какой смысл лететь к неизвестной цели, которой, может, уже давно и не существует, во всяком случае, в прежнем виде и на старом месте?

Значит, даже полеты со скоростью света обоснованны только до относительно близких звезд. Однако аппараты, летящие со скоростью света, живут пока лишь в теории, которая напоминает фантастику, правда, научную.

КОРАБЛЬ РАЗМЕРОМ С ПЛАНЕТУ

Естественно, в первую очередь ученым пришла мысль использовать в двигателе корабля наиболее эффективную термоядерную реакцию - как уже частично освоенную (в военных целях). Однако для путешествия в оба конца со скоростью, близкой к световой, даже при идеальной конструкции системы, требуется отношение начальной массы к конечной не менее чем 10 в тридцатой степени. То есть звездолет будет походить на огромный состав с топливом величиной с маленькую планету. Запустить такую махину в космос с Земли невозможно. Да и собрать на орбите - тоже, недаром ученые не обсуждают этот вариант.

Весьма популярна идея фотонного двигателя, использующего принцип аннигиляции материи.

Аннигиляция - это превращение частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изучена аннигиляция электрона и позитрона, порождающая фотоны, энергия которых и будет двигать звездолет. Расчеты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70% от скорости света.

Однако дальше начинаются сплошные проблемы. К сожалению, применить антивещество в качестве ракетного топлива очень непросто. Во время аннигиляции происходят вспышки мощнейшего гамма-излучения, губительного для космонавтов. Кроме того, контакт позитронного топлива с кораблем чреват фатальным взрывом. Наконец, пока еще нет технологий для получения достаточного количества антивещества и его длительного хранения: например, атом антиводорода «живет» сейчас менее 20 минут, а производство миллиграмма позитронов обходится в 25 миллионов долларов.

Но, предположим, со временем эти проблемы удастся разрешить. Однако топлива все равно понадобится очень-очень много, и стартовая масса фотонного звездолета будет сравнима с массой Луны (по оценке Константина Феоктистова).

ПОРВАЛИ ПАРУС!

Наиболее популярным и реалистичным звездолетом на сегодняшний день считается солнечный парусник, идея которого принадлежит советскому ученому Фридриху Цандеру.

Солнечный (световой, фотонный) парус - это приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.
В 1985 году американским физиком Робертом Форвардом была предложена конструкция межзвездного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звезд за 21 год.

На XXXVI Международном астрономическом конгрессе был предложен проект лазерного звездолета, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия. По расчетам, путь звездолета этой конструкции до звезды эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

«Маловероятно, что по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем. Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей Солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей».

Эти слова принадлежат не фантасту, а конструктору космических кораблей и космонавту Константину Феоктистову. По мнению ученого, ничего особо нового в Солнечной системе уже не обнаружится. И это при том, что человек пока долетел только до Луны...


Однако за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида.

Все это пока теория, однако первые шаги уже делаются.

В 1993 году на российском корабле «Прогресс М-15» в рамках роекта «Знамя-2» был впервые развернут солнечный парус 20-метровой ширины. При стыковке «Прогресса» со станцией «Мир» ее экипаж установил на борту «Прогресса» агрегат развертывания отражателя. В итоге отражатель создал яркое пятно 5 км в ширину, которое прошло через Европу в Россию со скоростью 8 км/с. Пятно света имело светимость, примерно эквивалентную полной Луне.



Итак, преимущество солнечного парусника - отсутствие топлива на борту, недостатки - уязвимость конструкции паруса: по сути, это тонкая фольга, натянутая на каркас. Где гарантия, что по дороге парус не получит пробоин от космических частиц?

Парусный вариант может подойти для запуска автоматических зондов, станций и грузовых кораблей, но непригоден для пилотируемых полетов с возвратом. Существуют и другие проекты звездолетов, однако они, так или иначе, напоминают вышеперечисленные (с такими же масштабными проблемами).

СЮРПРИЗЫ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Думается, путешественников во Вселенной поджидает множество сюрпризов. К примеру, едва высунувшись за пределы Солнечной системы, американский аппарат «Пионер-10» начал испытывать силу неизвестного происхождения, вызывающую слабое торможение. Высказывалось много предположений, вплоть до о неизвестных пока эффектах инерции или даже времени. Однозначного объяснения этому феномену до сих пор нет, рассматриваются самые различные гипотезы: от простых технических (например, реактивная сила от утечки газа в аппарате) до введения новых физических законов.

Другой аппарат, «Вояд-жер-1», зафиксировал на границе Солнечной системы область с сильным магнитным полем. В нем давление заряженных частиц со стороны межзвездного пространства заставляет поле, создаваемое Солнцем, уплотняться. Также аппарат зарегистрировал:

  • рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвездного пространства;
  • резкий рост уровня галактических космических лучей - высокоэнергетических заряженных частиц межзвездного происхождения.
И это только капля в море! Впрочем, и того, что сегодня известно о межзвездном океане, достаточно, чтобы поставить под сомнение саму возможность бороздить просторы Вселенной.

Пространство между звездами не пустое. Везде есть остатки газа, пыли, частицы. При попытке движения со скоростью, близкой к скорости света, каждый столкнувшийся с кораблем атом будет подобен частице космических лучей большой энергии. Уровень жесткой радиации при такой бомбардировке недопустимо повысится даже при полетах к ближайшим звездам.

А механическое воздействие частиц при таких скоростях уподобится разрывным пулям. По некоторым расчетам, каждый сантиметр защитного экрана звездолета будет непрерывно обстреливаться с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета. Или должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн).



Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны, тем паче, что по дороге можно нарваться не только на пыль, но и на что-то покрупнее, или попасть в ловушку неизвестного гравитационного поля. И тогда гибель опять-таки неминуема. Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями. Но тогда фактор времени делает эти полеты бессмысленными.

Получается, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя. Бессмысленно ломиться через пространство и время с помощью механической конструкции.

КРОТОВАЯ НОРА

Фантасты, стараясь побороть неумолимое время, сочинили, как «прогрызать дырки» в пространстве (и времени) и «сворачивать» его. Придумали разнообразные гиперпространственные скачки от одной точки пространства до другой, минуя промежуточные области. Теперь к фантастам присоединились ученые.

Физики принялись искать экстремальные состояния материи и экзотические лазейки во Вселенной, где можно передвигаться со сверхсветовой скоростью вопреки теории относительности Эйнштейна.



Так появилась идея кротовой норы. Эта нора осуществляет смычку двух частей Вселенной подобно прорубленному тоннелю, соединяющему два города, разделенные высокой горой. К сожалению, кротовые норы возможны только в абсолютном вакууме. В нашей Вселенной эти норки крайне неустойчивы: они попросту могут сколлапсировать до того, как туда попадет космический корабль.

Однако для создания стабильных кротовых нор можно использовать эффект, открытый голландцем Хендриком Казимиром. Он заключается во взаимном притяжении проводящих незаряженных тел под действием квантовых колебаний в вакууме. Оказывается, вакуум не совсем пуст, в нем происходят колебания гравитационного поля, в котором спонтанно возникают и исчезают частицы и микроскопические кротовые норы.

Остается только обнаружить одну из нор и растянуть ее, поместив между двумя сверхпроводящими шарами. Одно устье кротовой норы останется на Земле, другое космический корабль с околосветовой скоростью переместит к звезде - конечному объекту. То есть звездолет будет как бы пробивать тоннель. По достижении звездолетом пункта назначения кротовая нора откроется для реальных молниеносных межзвездных путешествий, продолжительность которых будет исчисляться минутами.

ПУЗЫРЬ ИСКРИВЛЕНИЯ

Сродни теории кротовых нор пузырь искривления. В 1994 году мексиканский физик Мигель Алькубьерре выполнил расчеты согласно уравнениям Эйнштейна и нашел теоретическую возможность волновой деформации пространственного континуума. При этом пространство будет сжиматься перед космическим кораблем и одновременно расширяться позади него. Звездолет как бы помещается в пузырь искривления, способный передвигаться с неограниченной скоростью. Гениальность идеи состоит в том, что космический корабль покоится в пузыре искривления, и законы теории относительности не нарушаются. Движется при этом сам пузырь искривления, локально искажающий пространство-время.

Несмотря на невозможность перемещаться быстрее света, ничто не препятствует перемещению пространства или распространению деформации пространства-времени быстрее света, что, как полагают, и происходило сразу после Большого взрыва при образовании Вселенной.

Все эти идей пока не укладываются в рамки современной науки, однако в 2012 году представители НАСА заявили о подготовке экспериментальной проверки теории доктора Алькубьерре. Как знать, может, и теория относительности Эйнштейна когда-нибудь станет частью новой глобальной теории. Ведь процесс познания бесконечен. А значит, однажды мы сможем прорваться чрез тернии к звездам.

Ирина ГРОМОВА

Сможем ли мы на самом деле добраться до неведомых планет за пределами Солнечной системы? Как это вообще возможно?

Фантасты и кинематографисты, конечно, молодцы, хорошо поработали. В красочные истории, где человек покоряет самые дальние уголки космоса, действительно хочется верить. К сожалению, прежде чем эта картинка станет явью, нам придется преодолеть немало ограничений. Например, законы физики, какими мы их видим сейчас.

Но! В последние годы появилось несколько волонтерских и финансируемых частными лицами организаций (Фонд Tau Zero , проект Icarus , проект Breakthrough Starshot), каждая из которых ставит целью создание транспорта для межзвездных полетов и приблизить человечество к покорению Вселенной. Их надежду и веру в успех укрепляют позитивные новости, например, на орбите звезды Проксима-Центавра планеты размером с Землю.

Создание межзвездного космического аппарата станет одной из тем для обсуждения на Всемирном саммите BBC Future «Идеи, которые меняют мир» в Сиднее в ноябре. Сможет ли человек отправиться в другие галактики? И если да, то какие виды космических кораблей нам для этого понадобятся?

Куда бы нам отправиться?


А куда лететь не стоит? Во Вселенной звезд больше , чем песчинок на Земле — около 70 секстиллионов (это 22 нуля после семерки) — и, по оценкам ученых, миллиарды из них имеют на орбитах от одной до трех планет в так называемой «зоне Златовласки»: на них не слишком холодно и не слишком жарко. В самый раз .

С самого начала и до сих пор лучшим претендентом для первого межзвездного полета является наш ближайший сосед — тройная звездная система Альфа Центавра. Она находится на расстоянии 4,37 световых лет от Земли. В этом году астрономы Европейской южной обсерватории обнаружили планету размером с Землю, вращающуюся вокруг красного карлика Проксима Центавра из этого созвездия. Масса планеты, названной Проксима b, как минимум в 1,3 раза больше земной, и она имеет очень короткий период обращения вокруг своей звезды - всего 11 земных дней. Но все равно эта новость чрезвычайно взволновала астрономов и охотников за экзопланетами, ведь температурный режим Проксимы b подходит для существования воды в жидком виде, а это - серьезный плюс к возможной обитаемости.

Но есть и недостатки: мы не знаем, имеет ли Проксима b атмосферу, и, учитывая ее близость к Проксима Центавра (ближе, чем Меркурий к Солнцу), она, вероятно, будет подвергаться воздействию выбросов звездной плазмы и радиации. И она так заперта приливными силами, что всегда обращена к звезде одной стороной. Это, конечно, может полностью изменить наши представления о дне и ночи.

И как мы туда попадем?


Это вопрос на 64 триллиона долларов. Даже на максимальной скорости, которую позволяют развить современные технологии, нам до Проксимы Б 18 тысяч лет. И высока вероятность, что добравшись до цели мы встретим там… наших потомков в Земли, которые уже колонизировали новую планету и забрали всю славу себе. Поэтому глубокие умы и бездонные карманы ставят себе амбициозную задачу: найти более быстрый способ пересекать огромные расстояния.

Breakthrough Starshot - это космический проект с бюджетом в размере 100 миллионов долларов, он финансируется российским миллиардером Юрием Мильнером. Breakthrough Starshot сосредоточился на создании крошечных беспилотных зондов со световыми парусами, подгоняемых мощным наземным лазером. Идея в том, что космический аппарат достаточно малого веса (едва ли 1 грамм) со световым парусом можно будет регулярно ускорять мощным световым лучом с Земли примерно до скорости в одну пятую от скорости света. Такими темпами нанозонды достигнут Альфа Центавра примерно за 20 лет.

Разработчики проекта Breakthrough Starshot рассчитывают на миниатюризацию всех технологий, ведь крошечный космический зонд должен нести с собой камеру, подруливающие устройства, источник питания, средства связи и навигационное оборудование. Все для того, чтобы по прибытии сообщить: «Смотрите, я здесь. А она совсем не вертится». Миллер надеется, что это сработает и заложит основу для следующего, более сложного этапа межзвездных передвижений: путешествия человека.

А что же варп-двигатели?

Да, в сериале Star Trek это все выглядит очень просто: включил варп-двигатель и полетел быстрее скорости света. Но все, что мы в настоящее время знаем о законах физики, говорит нам: путешествия со скоростью выше скорости света, или даже равной ей, невозможны . Но ученые не сдаются: NASA вдохновилось другим захватывающим двигателем из научной фантастики и запустило проект NASA Evolutionary Xenon Thruster (сокращено NEXT) — ионный двигатель, который сможет ускорять космические корабли до скорости 145 тысяч км/ч, используя лишь одну фракцию топлива для обычной ракеты.

Но даже на таких скоростях мы не сможем улететь далеко от Солнечной системы за одну человеческую жизнь. Пока мы не разберемся, как работать с пространством-временем, межзвездные путешествия будет протекать очень, очень медленно. Возможно, уже пора начать воспринимать то время, которое галактические странники проведут на борту межзвездного корабля, просто как жизнь, а не как поездку на «космическом автобусе» от пункта А к пункту Б.

Как мы выживем в межзвездном путешествии?


Варп-двигатели и ионные моторы - это, конечно, очень круто, но во всем этом будет мало проку, если наши межзвездные странники погибнут от голода, холода, обезвоживания или отсутствия кислорода еще до того, как покинут пределы Солнечной системы. Исследователь Рейчел Армстронг утверждает, что нам пора задумываться о создании настоящей экосистемы для межзвездного человечества.

«Мы переходим от индустриального взгляда к экологическому видению реальности», — заявляет Армстронг.

Армстронг — профессор экспериментальной архитектуры в Университете Ньюкасла в Великобритании — говорит о таком понятии как «worlding»: «Это о пространстве обитания, а не только о дизайне объекта». Сегодня внутри космического корабля или станции все стерильно и выглядит как промышленный объект. Армстронг считает, что вместо этого мы должны подумать об экологической составляющей космических судов: о растениях, которые мы сможем выращивать на борту, и даже о видах почв, которые возьмем с собой. В будущем, как она предполагает , космолеты будут выглядеть как гигантские биомы, полные органической жизни, а не сегодняшние холодные, металлические ящики.

А мы не можем просто проспать всю дорогу?


Криосон и гибернация - это, конечно хорошее решение довольно неприятной проблемы: как сохранить людей живыми во время путешествия, которое длится гораздо дольше, чем сама человеческая жизнь. По крайней мере, в кино так делают . И в мире полно крио-оптимистов: Фонд продления жизни Алькор хранит множество крио-консервированных тел и голов людей, которые надеются, что наши потомки научатся безопасно размораживать людей и избавляться от неизлечимых ныне заболеваний, но в настоящее время таких технологий не существует.

В фильмах типа «Интерстеллар» и в книгах наподобие «Seveneves» Нила Стивенсона озвучивается идея отправить в космос замороженные эмбрионы, которые могли бы пережить даже самый длительный полет, потому что ни есть, ни пить, ни дышать им не нужно. Но это поднимает проблему «курицы и яйца»: кто-то ведь должен ухаживать за этим зарождающимся человечеством в несознательном возрасте.

Так это все реально?

«С самого зарождения человечества мы смотрели на звезды и обращали к ним наши надежды и страхи, тревоги и мечты», — говорит Рэйчел Армстронг .

С запуском новых инженерных проектов, таких как Breakthrough Starshot, «мечта становится реальным экспериментом».

Полет к звездам

С самого начала было ясно, что пространство Солнечной системы, ее планеты находятся в пределах досягаемости космических аппаратов и кораблей, которые могут быть созданы при современном уровне техники и знаний, и, следовательно, люди смогут если не высадиться, то, во всяком случае, добраться или дотянуться до любой из ее планет.

Но одновременно стало проясняться, что дома, в Солнечной системе, мы сможем получить данные о планетах, астероидах, кометах, об их особенностях, возможно, об их происхождении, но не больше. Скорее всего, в Солнечной системе вообще ничего неожиданного, принципиально нового мы не узнаем. Маловероятно, чтобы по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем.

Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей. Недаром, хотя и несколько преждевременно, американцы назвали своих космонавтов астронавтами, то есть звездоплавателями.

Это рождало мысли о звездных кораблях, и поэтому возникло само название «космический корабль». Мы, создатели, назвали его космолетом. Королев не принял это название. Сейчас уж и не припомню, когда и кто из нас предложил назвать нашу будущую машину кораблем. Но хорошо помню, как однажды мне показали фотомонтаж, перепечатанный из какого-то иностранного журнала: каравелла на фоне туманности Конская Голова, улетающая на всех парусах вдаль! Корабль! Это как раз то, что отвечало нашим устремлениям.

Рано или поздно человеческая мысль должна была вернуться к звездным кораблям. Какими они должны быть? Какие проблемы нужно решить, чтобы звездные полеты стали реальностью?

Если говорить об автоматических космических аппаратах, направляемых к ближайшим звездам, то в принципе эта задача не представляется неразрешимой.

Но размышления и простые оценки параметров кораблей для полетов людей к звездам показывают, что, пытаясь решить задачу осуществления звездных полетов, мы сталкиваемся с принципиальными трудностями.

Первая проблема - время. Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. А полеты за пределы галактики потребуют во много раз больше времени. Так что ограничимся при рассмотрении задачи путешествий к звездам только нашей Галактикой.

Представим, что наука сумеет замораживать космонавтов на какое-то количество лет, с тем чтобы они «ожили», прибыв к цели назначения, или отправлять в путешествие человеческие зародыши. И даже если решить эту проблему не только технически, но и в моральном плане, то ведь после путешествия они вернутся в совершенно чужой для них мир. Достаточно вспомнить об изменениях, произошедших за последние 200 лет (а здесь речь идет о десятках тысячелетий!), и становится ясно, что после возвращения космонавты окажутся в совершенно незнакомом мире: полет к звездам практически всегда будет полетом в одну сторону. Для окружающих, родных, друзей космических путешественников это будет чем-то вроде проводов родного человека в последний путь.

Вторая проблема - опасный поток частиц, газа и пыли. Пространство между звездами не пустое. Везде есть остатки газа, пыли, потоки частиц. При попытке движения со скоростью, достаточно близкой к скорости света, они создадут поток частиц высокой энергии, который будет воздействовать на корабль и от которого практически невозможно будет защититься.

Третья проблема - энергетика. Если в ракетном двигателе корабля использовать наиболее эффективную термоядерную реакцию, то для путешествия в оба конца со скоростью, близкой к скорости света, даже при идеальной конструкции ракетной системы, требуется отношение начальной массы к конечной не менее, чем десять в тридцатой степени, что представляется нереализуемым.

Что же касается создания фотонного двигателя для звездного корабля, использующего аннигиляцию материи, то здесь пока маячат сплошные проблемы (хранение гигантских запасов антивещества, защита конструкции корабля и зеркала фотонного двигателя от выделяемой энергии и от той части антивещества, которая не подвергнется аннигиляции в двигателе, и прочее), и не видно решения ни одной из них.

Но предположим даже, что нам удастся сделать фотонный двигатель. Попробуем представить себе галактический фотонный корабль, способный летать со скоростью, достаточно близкой к скорости света, чтобы снять проблемы времени. Собственное время полета космонавтов туда и обратно в путешествии на расстояние порядка половины диаметра нашей Галактики при оптимальном графике полета (непрерывный разгон, а затем непрерывное торможение) составит (по часам на корабле) около 42 лет при полете с ускорением (разгона или торможения), равным земному ускорению силы тяжести. По часам на Земле при этом пройдет около 100 000 лет.

Предположим, что нам удалось получить идеальный процесс в фотонном двигателе, сделать идеальную конструкцию с нулевой массой баков (чего, конечно, быть не может, но это только означает, что на самом деле результаты будут значительно хуже), и попробуем оценить некоторые параметры такого идеального корабля для полета примерно на половину диаметра Галактики. Оказывается, что отношение начальной массы корабля к конечной составит порядка десяти в девятнадцатой степени! Это означает, что при массе жилых и рабочих помещений и оборудования (то есть всего того, что везет корабль), равной всего 100 тоннам, стартовая масса окажется больше массы Луны. Причем половина этой массы - антивещество. Откуда его взять? Как передавать на него усилие для разгона?

Из сегодняшних представлений о мире складывается впечатление, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя, бессмысленно ломиться через пространство и время с помощью механической конструкции.

Нужно найти способ межзвездных путешествий, не связанный с необходимостью транспортировки материального тела. Эта идея давно используется в фантастической литературе (что само по себе не должно смущать, так как не раз глобальные научные цели впервые формулировались в сказках, в фантастической литературе) - идея о путешествиях разумных существ в виде пакета информации.

Электромагнитные волны распространяются практически без потерь во всей наблюдаемой Вселенной. Возможно, здесь и кроется ключ к разгадке тайны межзвездных перелетов.

Если не впадать в мистику, то следует признать, что личность современного человека нельзя отделить от тела. Но можно представить себе специально сконструированного индивидуума, у которого личность может отделяться от тела, аналогично тому, как математическое обеспечение может быть отделено от конструкции современных электронных вычислительных машин.

Личность - это индивидуальный комплекс особенностей данного человека в его восприятии внешнего мира, в его алгоритмах обработки информации и реакциях на принимаемую информацию, в его воображении, симпатиях и антипатиях, в его знаниях.

Если пакет информации, являющийся полным описанием личности, может быть переписан с ее полей оперативных операций и запоминающих устройств, то этот пакет информации может быть и передан по линии связи на приемную станцию назначения и там переписан в стандартный материальный носитель (или выбираемый по прейскуранту, или…), в котором путешественник уже на месте сможет жить, действовать, перемещаться, удовлетворять свое любопытство.

Во время передачи пакета информации личности такой индивидуум не живет. Чтобы он мог существовать, действовать, его личность (пакет информации) должна быть размещена в материальном носителе. Его личность, если угодно - его дух, может существовать только на материальных полях операций и запоминающих устройств.

Такой способ решения задачи полета к звездам стал бы реализацией не только сюжетов современной фантастики, но и древних мифов, сказок, преданий о вознесении на небо и о свержении в ад, о летающей посуде и о мирах, где люди то появляются, то исчезают, о переселении душ. Возможно, тогда разрешились бы философские споры о человеке, о бренности его телесной оболочки и сути бытия. Что есть человек? Что есть истина?

Интересно, что выдающиеся философы в разные исторические периоды, от античности до нашего времени, путем логического анализа (основанного, кстати, не на знании) приходили к вполне современным представлениям о соотношении между внутренней сущностью и телом человека. Жизнь человека - это жизнь его души, это бьющаяся в беспомощных усилиях мысль о себе (что есть я?), о мире вне себя и в себе, эстетическое наслаждение красотой и отторжение примитива и неправды, это свобода мысли и анализа. Мы здесь, мы живем, пока способны размышлять, оценивать, перерабатывать информацию и генерировать ее. Остальное во мне, тело мое - для обслуживания.

Наш мозг - поле математических операций с символами, числами, понятиями, правилами и алгоритмами. Эти операции обеспечивают синтез поступающей информации и ее анализ. Сложившиеся в конкретном человеке алгоритмы обработки, анализа и оценки информации определяют его эстетику и самовосприятие, его ощущение собственного существования. Конечно, эти операции выполняются по определенным для данного человека правилам. Эти правила постепенно формируются в мозге индивидуума (в результате его опыта получения и переработки информации, опыта собственной деятельности и ее оценки) и записываются на полях математических операций и на запоминающих устройствах его мозга. Причем с течением жизни эти правила могут совершенствоваться, меняться (как меняется сам человек со временем), портиться. Записанные на материальном носителе, они как бы становятся материальными. Но сами эти операции, мысли, переживания есть нечто такое, чего нельзя увидеть, «пощупать». Человек во все времена пытался материализовать это нечто в виде звуков, слов, красок. Но всегда попытка самовыражения оказывалась лишь тенью, слабым эхом этого нечто.

Тело - это обслуживающие системы поля математических операций (питание, очистка, перемещения, средства связи с внешним миром и тому подобное). Но подавляющее большинство людей, почти все и почти всегда, не различали свое «я» и свое тело. И всегда стремились получше устроить свое тело.

В этом есть логика: без питания умирает головной мозг, распадается поле операций, исчезает личность. В здоровом теле «компьютер» работает с меньшим количеством сбоев, с большей скоростью (за счет параллельно идущих операций, и вообще за счет лучших алгоритмов), обеспечивает большую внутреннюю устойчивость к внешним угрозам и осложнениям. И главное - обеспечивает ясность мышления.

Может быть, поэтому стремление ублажить свое тело из поколения в поколение оставалось главной движущей силой человеческого рода. Оно определяло и грабительские походы, и создание новых технологий, и стремление к лучшей организации жизни общества (в том числе и методом «ограбим богатых», замаскированным лозунгом «долой эксплуатацию»). Дома, автомобили, самолеты, газ, электричество, вычислительная техника родились из этого стремления. Стремление обеспечить максимум удобств телесной оболочке было и остается до сих пор главным движителем в жизни людей.

А ведь на самом деле это вторично. Наше «я», наша индивидуальность, наша суть, наше бытие - это не материальная оболочка. И нет ничего противоречащего нашему восприятию мира, в мысли о принципиальной возможности разделения индивидуальности и ее материального носителя.

Поэтому с инженерной точки зрения представляется возможным сконструировать такого человека, душа которого может отделяться от тела, а возможно, и сконструировать мир, где человек практически мгновенно (скажем, в пределах Солнечной системы) может перемещаться с одной планеты на другую.

Допустимо ли создавать такое существо? Имеем ли мы на это право? Какие стимулы жизни мы можем предложить ему? Именно в этих вопросах главная проблема.

Мы, скорее всего, продукт органической эволюции. В нас глубоко заложен инстинкт жизни, инстинкт продолжения рода. Когда с возрастом, здоровьем, условиями жизни умирает этот инстинкт, у человека пропадает желание жить. А какой же стимул жизни мы сможем предложить нашему творению? Любопытство? Желание быть полезным людям, создавшим его тело (бренное и сменяемое) и воспитавшим его личность и душу? Желание выявиться в исследованиях мира, в сверхдальних путешествиях, в создании приемопередающих станций для путешествий, в строительстве космических околозвездных баз?

Убедительны ли эти стимулы? Откуда ему взять привязанность и любовь к ближним? Как воспитать его, чтобы он не оказался монстром с нелепыми и бессмысленными устремлениями к власти, к возможности давать указания, воспитывать и слыть благодетелем? Или наоборот, чтобы он не оказался инфантильным безынициативным существом, равнодушным к миру, к ближним и к самому себе?

И конечно, на пути создания подобного существа встают громадные технические проблемы. Как мы мыслим? Как создаются стереотипы наших реакций, поведения, оценок, как рождается наша индивидуальность? Скорее всего, алгоритмы восприятия окружающего мира, анализа, мышления возникают в каждом человеке заново и, в той или иной степени, по-иному. Их характер определяется генами, средой, структурой общества, радостями и огорчениями его детства. В обществе рабов вырастают рабы, в обществе свободных людей - независимые, уважающие собственное достоинство индивидуальности. С этой точки зрения, очень опасны стандартизированные приемы воспитания: ясли, детские сады, школы. Это самое страшное, что можно сделать для своего будущего. Человечество может быть сильно только разнообразием, индивидуальностями. Конечно, некоторые основы заветы, заповеди - должны быть общими для всех: люби ближнего своего, не укради, не убей, не пожелай… Но формировать человека по стандарту - готовить собственную гибель.

Как, не разобравшись во всех этих вещах, приступать к созданию искусственного интеллекта? Нас ждут на этой дороге неизбежные трагические ошибки и неудачи. Но эта идея уже вошла в сознание самых любопытных и предприимчивых. Надо полагать - это дело будет развиваться.

Появятся и более понятные трудности.

Если «передавать личность» на галактические расстояния, то придется создавать антенны с размерами порядка километров и передатчики с мощностью порядка сотен миллионов киловатт. Но для реализации такого способа галактических путешествий необходимо не только создать нового космического человека, у которого личность может быть отделена от тела, от материального носителя и в виде пакета информации передана через канал связи, но и создать приемные и передающие станции (например, в радиодиапазоне), развезти их (например, с помощью автоматических космических аппаратов) к возможным пунктам назначения (расположенным, как правило, невдалеке от какой-либо звезды для обеспечения приемопередающих станций энергией). При этом можно развозить приемопередающие станции, а можно только технологию, минимальный набор инструментов и роботов для изготовления их на месте назначения.

Но доставка станций со скоростями порядка сотен и даже тысяч километров в секунду к звездам, находящимся от нас на расстояниях десятков световых лет, потребует тысячелетий и десятков тысячелетий. За это время может быть утерян интерес к самому предприятию.

Тем не менее этот путь лежит в рамках возможного.

Можно представить и другой путь осуществления звездных путешествий космическим человеком: через выход на связь с другими цивилизациями.

Собственно в налаживании обмена информацией во время путешествия будет участвовать все человечество. Информация, полученная из другого мира о нем, о его обитателях, их жизни, и переданная информация туда о нашей жизни и будет путешествием всего человечества к звездам.

И снова возникает тот же вечный вопрос: как выйти на связь с другими цивилизациями?

Логичный путь: заявить о себе, создать и включить маяк, получить запрос и вступить в связь. Если исходить из идеи создания импульсного радиомаяка, излучающего во все стороны (например, вдоль плоскости Галактики), получающего энергию от Солнца с помощью солнечных батарей мощностью миллиард киловатт (оценка проведена применительно к маяку с полосой частот всего 100 герц), то от абонентов, ищущих маяки, потребуется создание приемных антенн с диаметрами от 1 до 10–20 километров для поиска на расстояниях, соответственно, от одной до пятидесяти тысяч световых лет. Мощность в миллиард киловатт можно получить от солнечных батарей с размерами порядка 100 на 100 километров. Гигантские размеры, но вполне обозримые. Конструкцию таких солнечных батарей можно представить в виде ферменной платформы с натянутыми на ней пленочными солнечными батареями.

Если говорить о связи с цивилизациями, удаленными от нас на тысячи или десятки тысяч лет, то сроки выхода на связь с другими цивилизациями будут, соответственно, тысячи и десятки тысяч лет. Уже не миллионы, но все равно очень долго.

Может ли быть более короткий путь? Возможно. Если какие-то другие цивилизации избрали этот путь налаживания связей в нашей Галактике, то они могли уже создать и включить свои маяки. Значит, нам надо искать эти маяки, строить приемные антенны, способные принять сигналы галактических маяков. Радиотелескопы с антеннами, размеры которых измеряются километрами, уже в ближайшие десятилетия можно строить на околоземных орбитах и на орбитах спутников Солнца.

Время выхода на прием сигналов других цивилизаций будет определяться временем создания больших космических радиотелескопов и временем поиска сигналов маяков. Но где искать? Может быть, вблизи центра Галактики, может быть, вдоль средних линий спиральных рукавов Галактики, может быть в шаровых звездных скоплениях, поблизости от галактической плоскости. Или около звезд с планетными системами. Так или иначе, но это уже десятилетия, а не тысячи и не миллионы лет.

Нет ли более простого выхода на связь с другими цивилизациями?

Предположим, что представители других цивилизаций уже были (или есть?) на Земле или в Солнечной системе. Как их найти, каковы могут быть следы их деятельности? Где могут располагаться их приемопередающие станции?

Тут можно выделить два направления поиска.

Сами космические существа, какими они могут быть? Размеры, особенности их жизни. Им, наверное, не нужна атмосфера и органика для питания, а космос - это их естественная среда обитания? Как их найти? Почему они не выходят на контакт с нами? Поиски ответов на эти вопросы и есть первое направление.

Второе направление связано с поисками их средств связи, поисками станций приема и отправки путешественников.

Размышления о проблеме полетов к звездам позволяют выделить несколько перспективных направлений работ: создание все более и более крупных радиотелескопов, разработка космических роботов, разработка конструкции и идеологии маяков, чтобы найти наиболее эффективный метод их поиска, исследование возможности создания и разработка искусственного интеллекта, поиск каналов связи других цивилизаций в Солнечной системе. Эти направления вполне увязываются с современными нуждами человечества.

Работы по искусственному интеллекту сопряжены с решением задачи создания достаточно эффективных роботов, которые могли бы заменить людей в опасных производствах, избавить их от труда в шахтах, от рутинной работы, которые помогли бы нам в освоении подводного мира, в строительстве. Создание больших радиотелескопов позволит вести наиболее эффективные исследования Вселенной и на ее границах, и в центре Галактики.

Цель таких размышлений на уровне фантастики - заглянуть вперед, чтобы выбрать дальние перспективы, которые стоят перед нами, чтобы определить направления поиска, сверить их с актуальными проблемами экологии и экономики, обустройства жизни людей на Земле, с интересными на сегодня задачами исследований Вселенной, и из этого анализа выявить направления работ, на которые стоит тратить общие средства, энергию и интеллект людей. Это стоит делать для того, чтобы взвешенно и разумно принимать решения о выборе.

А какие идеи, цели оставим потомкам мы? Не подпускать близко к власти тиранов, авантюристов и просто проходимцев? Но это было понятно людям еще в древние времена. Правда, реализовать это понимание, как правило, не удавалось. Идея чистой земли - без зловонных мертвых рек, без пустынь (вместо лесов), без радиационных проплешин на живом теле планеты? Это осознали люди еще в конце XIX века. Может быть, наш завет потомкам - полеты к звездам и поиски связи с другими цивилизациями? Эти идеи родились в фантастической литературе XX века. Разобраться, а как же все-таки устроен наш мир, наша Вселенная - этим озабочено человечество много веков. А может, все уже завещано нам, и наша задача - попытаться на своем временном витке развития человечества воплотить поставленные перед землянами цели?

Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович

Полет с постоянным углом наклона траектории Рассматривая движение ракеты по траектории с постоянным углом наклона в постоянном гравитационном поле, предположим, что тяга, расход топлива и удельный импульс являются линейными ограниченными функциями соотношения

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Полет с переменным углом наклона траектории В практических случаях угол наклона траектории полета ракеты меняется со временем, и оптимальная величина удельного импульса не является постоянной для всего полета. Меньший удельный импульс при большей тяге выгоден на

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Полет с изменяющимся временем (класс 2). Как следует из рис. 31.3, время запуска для задачи, относящейся к классу 2, определяется существенно проще. Времена запуска для первой и второй возможностей в случае в (рис. 31.3) не являются одинаковыми из-за прецессии орбиты к моменту

Из книги Взлёт 2006 12 автора Автор неизвестен

Из книги Шелест гранаты автора Прищепенко Александр Борисович

Первый и последний полет «Бурана» Программа первого полета орбитального самолета, за которым оставалось название «Буран», неоднократно пересматривалась.Предлагались трехсуточный и двухвитковый варианты. По первому варианты особые трудности могло вызвать то, что не

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

Проект «Ноев ковчег», или НАСА на пути к звездам На ежегодной встрече членов Американской ассоциации развития науки, проходившей в феврале 2002 года, представитель НАСА заявил, что это агентство собирается отправить за пределы Солнечной системы «корабль поколений» с

Из книги Взлет 2008 01-02 автора Автор неизвестен

«Полет» на Марс стартует через год В рамках подготовки к проведению рассчитанного на 500 дней уникального эксперимента по моделированию пилотируемого полета на Марс (программа «Марс-500»), начало которого запланировано на 4-й квартал 2007 г., продолжается набор добровольцев.

Из книги Крылья Сикорского автора Катышев Геннадий Иванович

5.6. Полет с грузом взрывчатки. Встреча с «черной вдовой» Под сладкий звук фанфар первых успехов, начались сборы в Нальчик. Помимо команды испытателей, самолет ВВС должен был доставить туда сборки Е-9 и более шестисот килограммов взрывчатки: пластита, с консистенцией,

Из книги ВЗЛЁТ 2011 06 автора Автор неизвестен

§ 5.11 Космические лучи - путь к звёздам …Планета есть колыбель разума, но нельзя вечно жить в колыбели. …Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное

Из книги Траектория жизни [с иллюстрациями] автора Феоктистов Константин Петрович

В полет спустя… 45 лет! Неожиданный сюрприз подготовила перед Новым годом ценителям истории отечественной авиации группа энтузиастов из КБ «Современные авиационные технологии». Обитатели ЛИИ им. М.М. Громова и окрестных дачных поселков с большим удивлением для себя

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

ПЕРВЫЙ ПОЛЕТ Утро 3 июня 1910 г. выдалось в Киеве тихим и безоблачным. Дул легкий ветерок. Вся команда была в сборе. БиС-2 выкатили из ангара. Игорь занял место пилота. «Контакт!» Мотор сразу заработал. После прогрева пилот дал максимальный газ. Три человека едва удерживали

Из книги Взлёт, 20013 №11 автора

MRJ первый полет - через год Минувший год не привнес каких бы то ни было существенных изменений в программу первого японского регионального реактивного самолета MRJ, создаваемого компанией «Мицубиси Эркрафт Корпорейшн». 15 сентября 2010 г. руководство «Мицубиси» объявило о

Из книги автора

Первый полет Мы стремились при разработке корабля «Восток» сделать его не только быстро, быстрее американцев (они уже объявили, что будут разрабатывать космический корабль), но, главное, сделать его надежным. Достаточно тривиальная постановка задачи. Но как этого

Из книги автора

Полет фоссета вокруг света В марте 2005 года известный американский бизнесмен и путешественник Стив Фоссет, как известно, установил новый рекорд. Ранее он облетел земной шар в одиночку на воздушном шаре, потом проделал то же самое и на самолете за 67 часов и 2 минуты. Как ему

Из книги автора

«Добролёт» спешит в полёт В 2014 г. давно вынашиваемые «Аэрофлотом» планы по созданию бюджетного авиаперевозчика должны, наконец, превратиться в реальность.10 октября было объявлено, что в группе компаний «Аэрофлот» появился свой лоукостер. Новый отечественный

Из книги автора

Анатолий Юртаев: «год прошел, полет нормальный!» Руководитель авиакомпании «Ангара» об эксплуатации Ан-148 Прошел год с того времени, как один из основных региональных авиаперевозчиков в Восточной Сибири, авиакомпания «Ангара» (входит в группу компаний «Истлэнд»), стала